ESSD

Achtemeier, G. L.: The Use of Insects as Tracers for “Clear-Air” Boundary-Layer Studies by Doppler Radar, J. Atmos. Ocean. Tech., 8, 746–765, https

Related articles

1962 Rolls Royce Silver Cloud II for sale on BaT Auctions Best Free Internet VPN Services with Unlimited Data in 2024 VPN Server Locations: The Best Countries to Connect to On Cloudstratus Review (New Gen) 2023 年 10 个最适合 Chromebook 的 VPN(免费和付费)

Achtemeier, G. L.: The Use of Insects as Tracers for “Clear-Air”
Boundary-Layer Studies by Doppler Radar, J. Atmos. Ocean.
Tech., 8, 746–765,
https://doi.org/10.1175/1520-0426(1991)008<0746:TUOIAT>2.0.CO;2, 1991. a, b, c

Aoki, M., Iwai, H., Nakagawa, K., Ishii, S., and Mizutani, K.: Measurements of
Rainfall Velocity and Raindrop Size Distribution Using Coherent Doppler
Lidar, J. Atmos. Ocean. Tech., 33, 1949–1966,
https://doi.org/10.1175/JTECH-D-15-0111.1, 2016. a

Biswas, S. K., Chandrasekar, V., Sahoo, S., and Lakshmi, A. K.: Study of a
Convective Event During the Relampago Field Experiment Using Spectral
Polarimetry, in: IGARSS 2022 – 2022 IEEE International Geoscience and Remote
Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022, 6534–6537, https://doi.org/10.1109/IGARSS46834.2022.9884392,
2022. a

Bonin, T. A. and Alan Brewer, W.: Detection of Range-Folded Returns in Doppler
Lidar Observations, IEEE Geosci. Remote S., 14, 514–518,
https://doi.org/10.1109/LGRS.2017.2652360, 2017. a

Bonin, T. A., Choukulkar, A., Brewer, W. A., Sandberg, S. P., Weickmann, A. M., Pichugina, Y. L., Banta, R. M., Oncley, S. P., and Wolfe, D. E.: Evaluation of turbulence measurement techniques from a single Doppler lidar, Atmos. Meas. Tech., 10, 3021–3039, https://doi.org/10.5194/amt-10-3021-2017, 2017. a, b


Browning , K. and Wexler , R. : The determination of kinematic property of a
wind field using Doppler radar , J. Appl . Meteorol .
Clim . , 7 , 105–113 , 1968 .   a , b , c

Bühl, J., Leinweber, R., Görsdorf, U., Radenz, M., Ansmann, A., and Lehmann, V.: Combined vertical-velocity observations with Doppler lidar, cloud radar and wind profiler, Atmos. Meas. Tech., 8, 3527–3536, https://doi.org/10.5194/amt-8-3527-2015, 2015. a

Chandra , A.   S. , Kollias , P. , Giangrande , S.   E. , and Klein , S.   A. : long – Term
observation of the Convective Boundary Layer Using Insect Radar Returns at
the SGP ARM Climate Research Facility , J. Climate , 23 , 5699–5714 ,
https://doi.org/10.1175/2010jcli3395.1 , 2010 .   a , b , c

Chandrasekar, V., Chen, H., and Philips, B.: Principles of High-Resolution
Radar Network for Hazard Mitigation and Disaster Management in an Urban
Environment, J. Meteorol. Soc. Jpn.. Ser. II, 96A,
119–139, https://doi.org/10.2151/jmsj.2018-015, 2018. a

Clifton, A. and Wagner, R.: Accounting for the effect of turbulence on wind
turbine power curves, in: Journal of Physics: Conference Series, vol. 524, p.
012109, IOP Publishing, https://doi.org/10.1088/1742-6596/524/1/012109, 2014. a

Cordoba, M., Dance, S. L., Kelly, G. A., Nichols, N. K., and Waller, J. A.:
Diagnosing atmospheric motion vector observation errors for an operational
high-resolution data assimilation system, Q. J. Roy.
Meteor. Soc., 143, 333–341, https://doi.org/10.1002/qj.2925,
2017. a

Dawson, D. T., Mansell, E. R., and Kumjian, M. R.: Does Wind Shear Cause
Hydrometeor Size Sorting?, J. Atmos. Sci., 72, 340–348, https://doi.org/10.1175/JAS-D-14-0084.1, 2015. a

Dias Neto, J.: The Tracing Convective Momentum Transport in Complex Cloudy
Atmospheres Experiment – Level 1, Zenodo [data set], https://doi.org/10.5281/zenodo.6926483,
2022a. a, b

Dias Neto, J.: The Tracing Convective Momentum Transport in Complex Cloudy
Atmospheres Experiment – Level 2, Zenodo [data set], https://doi.org/10.5281/zenodo.6926605,
2022b. a, b

Dixit, V., Nuijens, L., and Helfer, K. C.: Counter-Gradient Momentum Transport
Through Subtropical Shallow Convection in ICON-LEM Simulations, J.
Adv. Model. Earth Sy., 13, e2020MS002352,
https://doi.org/10.1029/2020MS002352, 2021. a


Doviak, R. J. and Zrnic, D. S.: Doppler radar and weather observations: Second
edition, 2 edn., Dover Publications, Mineola, NY, ISBN-13 9780486450605,
ISBN-10 0486450600, 2006. a, b


Eberhard, W. L., Cupp, R. E., and Healy, K. R.: Doppler lidar measurement of
profiles of turbulence and momentum flux, J. Atmos. Ocean.
Tech., 6, 809–819, 1989. a

Elliott, D. L. and Cadogan, J. B.: Effects of wind shear and turbulence on wind
turbine power curves, Tech. Rep., Pacific Northwest Lab., Richland, WA (USA), https://ui.adsabs.harvard.edu/abs/1990wien.conf…10E (last access: 15 November 2022),
1990. a

Geerts , B. and Miao , Q. : The Use of Millimeter Doppler Radar Echoes to Estimate
Vertical Air Velocities in the Fair – Weather Convective Boundary Layer ,
J. Atmos . Ocean . Tech . , 22 , 225–246 ,
https://doi.org/10.1175/JTECH1699.1 , 2005 .   a

Ghate , V.   P. , Cadeddu , M.   P. , Zheng , X. , and O’Connor , E. : Turbulence in the
Marine Boundary Layer and Air Motions below Stratocumulus Clouds at the ARM
Eastern North Atlantic Site , J. Appl . Meteorol . Clim . ,
60 , 1495–1510 , https://doi.org/10.1175/jamc-d-21-0087.1 , 2021 .   a , b

Gimeno , L. , Nieto , R. , Vázquez , M. , and Lavers , D. : atmospheric river : a
mini – review , Front . Earth Sci . , 2 , 1–6 , https://doi.org/10.3389/feart.2014.00002 ,
2014 .   a

Gimeno, L., Vázquez, M., Eiras-Barca, J., Sorí, R., Stojanovic, M.,
Algarra, I., Nieto, R., Ramos, A. M., Durán-Quesada, A. M., and
Dominguez, F.: Recent progress on the sources of continental precipitation as
revealed by moisture transport analysis, Earth-Sci. Rev., 201,
103070, https://doi.org/10.1016/j.earscirev.2019.103070, 2020. a

Heus, T., van Heerwaarden, C. C., Jonker, H. J. J., Pier Siebesma, A., Axelsen, S., van den Dries, K., Geoffroy, O., Moene, A. F., Pino, D., de Roode, S. R., and Vilà-Guerau de Arellano, J.: Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and overview of its applications, Geosci. Model Dev., 3, 415–444, https://doi.org/10.5194/gmd-3-415-2010, 2010. a

Ishwardat, N.: Radar based horizontal wind profile retrieval techniques: DFT
applied to scanning Doppler radar measurements, Master’s thesis, Delft
University of Technology, the Netherlands,
http://resolver.tudelft.nl/uuid:a659654b-e76a-4513-a656-ecad761bdbc8 (last access: 15 November 2022),
2017. a

Kelley , N. D. , Jonkman , B. J. , and Scott , G. N. : Great Plains Turbulence Environment : Its Origins , Impact , and Simulation , University of North Texas Libraries , UNT Digital Library ,
https://digital.library.unt.edu/ark:/67531/metadc882034/ ( last access : 21   January 2023 ) , 2006 .   a

Kishtawal , C.   M. , Deb , S.   K. , Pal , P.   K. , and Joshi , P.   C. : estimation of
Atmospheric Motion Vectors from Kalpana-1 Imagers , J. Appl .
Meteorol . Clim . , 48 , 2410–2421 , https://doi.org/10.1175/2009JAMC2159.1 ,
2009 .   a

Klingebiel, M., Ghate, V. P., Naumann, A. K., Ditas, F., Pöhlker, M. L.,
Pöhlker, C., Kandler, K., Konow, H., and Stevens, B.: Remote Sensing of
Sea Salt Aerosol below Trade Wind Clouds, J. Atmos.
Sci., 76, 1189–1202, https://doi.org/10.1175/JAS-D-18-0139.1, 2019. a

Koning , A.   M. , Nuijens , L. , Bosveld , F.   C. , Siebesma , A. , van Dorp , P.   A. , and
Jonker , H. : Surface – layer Wind Shear and Momentum Transport From Clear – Sky to
Cloudy Weather Regimes Over Land , J. Geophys . Res.-Atmos . , 126 , e2021JD035087 , https://doi.org/10.1029/2021JD035087 , 2021 .   a

Kosiba, K., Wurman, J., Richardson, Y., Markowski, P., Robinson, P., and
Marquis, J.: Genesis of the Goshen County, Wyoming, Tornado on 5 June 2009
during VORTEX2, Mon. Weather Rev., 141, 1157–1181,
https://doi.org/10.1175/MWR-D-12-00056.1, 2013. a


Kropfli, R.: Single Doppler radar measurements of turbulence profiles in the
convective boundary layer, J. Atmos. Ocean. Tech., 3,
305–314, 1986. a

Kumjian , M.   R. : Weather Radars , Springer International Publishing , 15–63 ,
Cham , https://doi.org/10.1007/978-3-319-72583-3_2 , 2018 .   a

Kumjian , M.   R. and Ryzhkov , A.   V. : The Impact of Size Sorting on the
Polarimetric Radar Variables , J. Atmos . Sci . , 69 , 2042–2060 , https://doi.org/10.1175/JAS-D-11-0125.1 , 2012 .   a

Lamb, D. and Verlinde, J.: Physics and Chemistry of Clouds, Cambridge
University Press, https://doi.org/10.1017/CBO9780511976377, 2011. a

Laurencin, C. N., Didlake Jr., A. C., Loeffler, S. D., Kumjian, M. R., and
Heymsfield, G. M.: Hydrometeor Size Sorting in the Asymmetric Eyewall of
Hurricane Matthew (2016), J. Geophys. Res.-Atmos., 125,
e2020JD032671, https://doi.org/10.1029/2020JD032671, 2020. a

Lhermitte, R. M.: Note on Wind Variability with Doppler Radar, J.
Atmos. Sci., 19, 343–346,
https://doi.org/10.1175/1520-0469(1962)019<0343:NOWVWD>2.0.CO;2, 1962. a


Lhermitte, R. M.: Note on the observation of small-scale atmospheric turbulence
by Doppler radar techniques, Radio Sci., 4, 1241–1246, 1969. a, b


Mann, J., Peña, A., Bingöl, F., Wagner, R., and Courtney, M.: Lidar
scanning of momentum flux in and above the atmospheric surface layer, J. Atmos. Ocean. Tech., 27, 959–976, 2010. a

Martner, B. E. and Moran, K. P.: Using cloud radar polarization measurements to
evaluate stratus cloud and insect echoes, J. Geophys. Res.-Atmos., 106, 4891–4897, https://doi.org/10.1029/2000JD900623,
2001. a

Miller, M. A., Yuter, S. E., Hoban, N. P., Tomkins, L. M., and Colle, B. A.: Detecting wave features in Doppler radial velocity radar observations, Atmos. Meas. Tech., 15, 1689–1702, https://doi.org/10.5194/amt-15-1689-2022, 2022. a

Naakka, T., Nygård, T., Vihma, T., Sedlar, J., and Graversen, R.:
Atmospheric moisture transport between mid-latitudes and the Arctic:
Regional, seasonal and vertical distributions, Int. J.
Climatol., 39, 2862–2879, https://doi.org/10.1002/joc.5988, 2019. a

Newman, J. F. and Clifton, A.: An error reduction algorithm to improve lidar turbulence estimates for wind energy, Wind Energ. Sci., 2, 77–95, https://doi.org/10.5194/wes-2-77-2017, 2017. a

Newman, J. F., Klein, P. M., Wharton, S., Sathe, A., Bonin, T. A., Chilson, P. B., and Muschinski, A.: Evaluation of three lidar scanning strategies for turbulence measurements, Atmos. Meas. Tech., 9, 1993–2013, https://doi.org/10.5194/amt-9-1993-2016, 2016. a


Peinke , J. , Barth , S. , Böttcher , F. , Heinemann , D. , and Lange , B. :
Turbulence , a challenge problem for wind energy , Physica A , 338 , 187–193 , 2004 .   a

Rennie, S. J., Illingworth, A. J., Dance, S. L., and Ballard, S. P.: The
accuracy of Doppler radar wind retrievals using insects as targets,
Meteorol. Appl., 17, 419–432,
https://doi.org/10.1002/met.174, 2010. a, b

Ritvanen , J. , O’Connor , E. , Moisseev , D. , Lehtinen , R. , Tyynelä , J. , and Thobois , L. : complementarity of wind measurement from co – locate x – band weather radar and Doppler lidar , Atmos . Meas . Tech . , 15 , 6507–6519 , https://doi.org/10.5194/amt-15-6507-2022 , 2022 .   a , b

Röttger, J. and Larsen, M. F.: UHF/VHF Radar Techniques for Atmospheric
Research and Wind Profiler Applications, American
Meteorological Society, Boston, MA, 235–281, https://doi.org/10.1007/978-1-935704-15-7_23, 1990. a

Sathe , A. and Mann , J. : A review of turbulence measurement using ground – base wind lidar , Atmos . Meas . Tech . , 6 , 3147–3167 , https://doi.org/10.5194/amt-6-3147-2013 , 2013 .   a

Sathe , A. , Mann , J. , Vasiljevic , N. , and Lea , G. : A six – beam method to measure turbulence statistic using ground – base wind lidar , Atmos . Meas . Tech . , 8 , 729–740 , https://doi.org/10.5194/amt-8-729-2015 , 2015 .   a , b , c

Siebesma, A. P. and Cuijpers, J. W. M.: Evaluation of Parametric Assumptions
for Shallow Cumulus Convection, J. Atmos. Sci., 52, 650–666, https://doi.org/10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2, 1995. a

Smalikho , I. N. and Banakh , V. A. : measurement of wind turbulence parameter by a conically scan coherent Doppler lidar in the atmospheric boundary layer , Atmos . Meas . Tech . , 10 , 4191–4208 , https://doi.org/10.5194/amt-10-4191-2017 , 2017 .   a


Stull, R. B.: An Introduction to Boundary Layer Meteorology, 1 edn., edited by: Stull, R. B., Springer
Dordrecht, Dordrecht, ISBN 978-94-009-3027-8, 2003. a

van Stratum, B., Siebesma, P., Barkmeijer, J., and van Ulft, B.: Downscaling
HARMONIE-AROME with Large-Eddy simulation, Tech. Rep., Royal Netherlands
Meteorological Institute,
https://cdn.knmi.nl/knmi/pdf/bibliotheek/knmipubTR/TR378.pdf (last access: 15 November 2022),
2019. a

vanZanten, M. C., Stevens, B., Nuijens, L., Siebesma, A. P., Ackerman, A. S.,
Burnet, F., Cheng, A., Couvreux, F., Jiang, H., Khairoutdinov, M., Kogan, Y.,
Lewellen, D. C., Mechem, D., Nakamura, K., Noda, A., Shipway, B. J.,
Slawinska, J., Wang, S., and Wyszogrodzki, A.: Controls on precipitation and
cloudiness in simulations of trade-wind cumulus as observed during RICO,
J. Adv. Model. Earth Sy., 3, M06001,
https://doi.org/10.1029/2011MS000056, 2011. a

Velden, C., Daniels, J., Stettner, D., Santek, D., Key, J., Dunion, J.,
Holmlund, K., Dengel, G., Bresky, W., and Menzel, P.: Recent Innovations in
Deriving Tropospheric Winds from Meteorological Satellites, B.
Am. Meteorol. Soc., 86, 205–224, https://doi.org/10.1175/BAMS-86-2-205,
2005.
 a

Velden, C. S. and Bedka, K. M.: Identifying the Uncertainty in Determining
Satellite-Derived Atmospheric Motion Vector Height Attribution, J.
Appl. Meteorol. Clim., 48, 450–463,
https://doi.org/10.1175/2008JAMC1957.1, 2009. a

Wainwright, C. E., Stepanian, P. M., Reynolds, D. R., and Reynolds, A. M.: The
movement of small insects in the convective boundary layer: linking patterns
to processes, Scientific Reports, 7, 5438, https://doi.org/10.1038/s41598-017-04503-0,
2017. a, b

Wilson, D.: Doppler radar studies of boundary layer wind profile and turbulence
in snow conditions, B. Am. Meteorol. Soc.,
51, 759–785, http://www.jstor.org/stable/26253228 (last access: 15 November 2022),
1970. a

Wilson, J. W., Weckwerth, T. M., Vivekanandan, J., Wakimoto, R. M., and
Russell, R. W.: Boundary Layer Clear-Air Radar Echoes: Origin of Echoes and
Accuracy of Derived Winds, J. Atmos. Ocean. Tech., 11,
1184–1206, https://doi.org/10.1175/1520-0426(1994)011<1184:BLCARE>2.0.CO;2, 1994. a, b

Zemp , D. C. , Schleussner , C.-F. , Barbosa , H. M. J. , van der Ent , R. J. , Donges , J. F. , Heinke , J. , Sampaio , G. , and Rammig , A. : On the importance of cascade moisture recycling in South America , Atmos . Chem . Phys . , 14 , 13337–13359 , https://doi.org/10.5194/acp-14-13337-2014 , 2014 .   a