Document
SVM-Based Cloud Detection Using Combined Texture Features

SVM-Based Cloud Detection Using Combined Texture Features

Tian, B., Shaikh, A., Azimi-Sajadi, M.R., Vonder Haar, T.H., Reinke, C.L.: A study of cloud classification with neural networks using spectral and tex

Related articles

Avis sur Astrill VPN (2024) : son prix élevé est-il vraiment justifié ? How To Watch YouTube Without Any Ads What Is a VPN? [How It Works & How to Choose One in 2024 ] Download TeraBox And Get 1TB Free Cloud Storage ” Erreur 720 : Impossible de se connecter à une connexion VPN ” lorsque vous essayez d’établir une connexion VPN
  1. Tian, B., Shaikh, A., Azimi-Sajadi, M.R., Vonder Haar, T.H., Reinke, C.L.: A study of cloud classification with neural networks using spectral and textural features. IEEE Trans. Neural Netw. 10, 138–152 (1999)

    article  

    Google Scholar  

  2. Liu, L., Sun, X., Chen, F., et al.: Cloud classification based on structure features of infrared images. J. Atmos. Ocean. Technol. 28, 410–417 ( 2011 )

    article  
    ADS  

    Google Scholar  

  3. Isosalo, A., Turtinen, M., Pietikainen, M.: Cloud characterization using local texture information. In: Proceedings of the Finnish Signal Processing Symposium, Oulu, Finland, pp. 1–6 (2007)

    Google Scholar 

  4. Calbo, J., Sabburg, J.: Feature extraction from whole-sky ground-based images for cloud-type recognition. J. Atmos. Ocean. Technol. 25, 3–12 (2008)

    article  
    ADS  

    Google Scholar  

  5. Heinle, A., Macke, A., Srivastav, A.: Automatic cloud classification of whole sky images. Atmos. Meas. Tech. Dis. 3, 557–567 ( 2010 )

    article  
    ADS  

    Google Scholar  

  6. Zhou, W., Cao, Z., Xiao, Y.: Cloud classification of ground-based images using texture-structure features. J. Atmos. Ocean. Technol. 31, 79–92 ( 2014 )

    article  
    ADS  

    Google Scholar  

  7. Singh, M., Glennen, M.: Automated ground-based cloud recognition. Formal Pattern Anal. Appl. 8, 258–271 (2005)

    Article 
    MathSciNet 

    Google Scholar  

  8. Christodoulou, C.I., Pattichis, C.S., Pantziaris, M., et al.: Texture-based classification of atherosclerotic carotid plaques. IEEE Tans. Med. Imaging. 22, 902–912 (2003)

    article  

    Google Scholar  

  9. Xie, M.H., Li, R.Y., Tian, Y.Q., et al.: The removing clouds method based on large remote sensing image. J. Beijing Normal Univ. 42, 42–47 (2006)

    Google Scholar  

  10. Azimi-Sadjadi, M.R., Zekavat, S.A.: Cloud classification using support vector machine. vol. 31, pp. 669–671 (2000)

    Google Scholar 

  11. Chen, Y., Zhang, C.: Multi-features cloud classification based on SVM and fractal dimension. Int. J. Digital Content Technol. Appl. 6, 211–220 (2013)

    Google Scholar  

  12. Zhou, X., et al.: Salient binary pattern for ground-based cloud classification. Acta. Meteor. Sin. 27, 211–220 (2013)

    article  

    Google Scholar  

  13. Zhou, X., Wu, F.: An improved approach to remove cloud and mist from remote sensing images based on the Mallat algorithm. Proc. SPIE Int. Soc. Opt. Eng. (2008)

    Google Scholar 

  14. Ma, J., Wang, C.: Image fusion for automatic detection and removal of clouds and their shadows. Proc. SPIE. 6419, 64191X (2006)

    article  

    Google Scholar  

  15. Lee, J., Weger, R.C., Sengupta, S.K., et al.: A neural network approach to cloud classification. IEEE Tans. Geosci. Remote Sens. 28, 846–855 ( 1990 )

    article  
    ADS  

    Google Scholar  

  16. Welch , R.M. , Sengupta , S.K. , Goroch , A.K. , et al . : polar cloud and surface classification using AVHRR imagery : An intercomparison of method . J. Appl . Meteorol .31, 405–420 (1992)

    article  
    ADS  

    Google Scholar  

  17. Tian, B., Shaikh, M.A., Azimi-Sadjadi, M.R., et al.: A study of cloud classification with neural networks using spectral and textural features. IEEE Trans. Neural Netw. 10, 138–151 (1999)

    article  

    Google Scholar  

  18. Buch, K.A., Sun, C.H.: Cloud classification using whole-sky imager data. In: Ninth Symposium on Meteorological Observations & Instrumentation, vol. 16, pp. 353–358 (1995)

    Google Scholar 

  19. Liang, D., Kong, J., Hu, G.S., et al.: The removal of thick cloud and cloud shadow of remote sensing image based on support vector machine. Acta Geodaetica et Cartographica Sinica. 41, 225–232 ( 2012 )

    Google Scholar  

  20. Kong, J., Hu, G.S., Liang, D.: Thin cloud removing approach of remote sensing image based on support vector machine. Comp. Eng. Design. 32, 599–602 (2011)

    Google Scholar  

  21. Gonzalez, R.C., Woods, R.E.: Digital image processing. Prentice Hall, Upper Saddle River (2003)

    Google Scholar  

  22. Soh, L.K., Tsatsoulis, C.: Texture analysis of SAR sea ice imagery using grey level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37, 780–795 (1999)

    article  
    ADS  

    Google Scholar  

  23. Al-Janobi, A.: Performance evaluation of cross-diagonal texture matrix method of texture analysis. Pattern Recogn. 34, 171–180 (2001)

    article  

    Google Scholar  

  24. Ojala, T., Pietikainen, M.: Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)

    article  

    Google Scholar