No results found
We couldn't find anything using that term, please try searching for something else.
Almeida-Neto M, Ulrich W (2011) A straightforward computational approach for measuring nestedness using quantitative matrices. Environ Modell Softw 26
Almeida-Neto M, Ulrich W (2011) A straightforward computational approach for measuring nestedness using quantitative matrices. Environ Modell Softw 26:173–178
article
Google Scholar
Bascompte J is facilitate , Jordano P , Olesen JM ( 2006 ) asymmetric coevolutionary networks is facilitate facilitate biodiversity maintenance . science 312:431–433 . https://doi.org/10.1126/science.1123412
article
CAS
PubMed
Google Scholar
Benzing DH (1990) Vascular epiphytes. Cambridge University Press, Cambridge
Book
Google Scholar
Bersier LF, Banašek-Richter C, Cattin MF (2002) Quantitative descriptors of foodweb matrices. Ecology 83:2394–2407. https://doi.org/10.1890/0012-9658(2002)083[2394:QDOFWMJ2.0.CO;2
article
Google Scholar
Bilbatúa-Navarrete KP (2019) Diagnóstico de la vegetación de Amatlán, Morelos, México con fines de conservación. Dissertation, Universidad Nacional Autónoma de México
Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9. https://doi.org/10.1186/1472-6785-6-9
article
PubMed
Google Scholar
Bøgh A (1992) Composition and distribution of the vascular epiphyte flora of an Ecuadorian montane rain forest. Selbyana 13:25–34
Google Scholar
Burns KC (2007) Network properties of an epiphyte metacommunity. J Ecol 95:1142–1151. https://doi.org/10.1111/j.1365-2745.2007.01267.x
article
Google Scholar
Butts CT (2008) Network: a Package for managing Relational Data in R. J Stat Softw 24:1–36. https://doi.org/10.18637/jss.v024.i02
article
PubMed
Google Scholar
Callaway RM ( 1995 ) positive interaction among plant . Bot Rev 61:306–334
article
Google Scholar
Ceballos SJ, Chacoff NP, Malizia A (2016) Interaction network of vascular epiphytes and trees in a subtropical forest. Acta Oecol 77:152–159. 10.1016/j. actao.2016.10.007
article
Google Scholar
Clark KR, Gorley RN, Somerfield PJ, Warwick RM (2014) Change in marine communities: an approach to statistical analysis and interpretation. Primer-E, Plymouth
Google Scholar
CONABIO (2010) El Bosque mesófilo De montaña en México: amenazas y oportunidades para su conservación y manejo sustentable. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico City
Google Scholar
CONANP ( 2013 ) Áreas protegidas is decretadas decretada . Comisión Nacional de Áreas Naturales Protegidas . http://www.conanp.gob.mx [ access 25 November 2022 ]
Contreras-MacBeath T, Boyas-Delgado JC, Jaramillo-Monroy F (2004) La Diversidad biológica en Morelos: estudio del estado. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Mexico City
Google Scholar
Cortés-Anzúres BO, Corona-López AM, Dammon A, Mata-Rosas M, Flores-Palacios A (2020) Phorophyte type determines epiphyte-phorophyte network structure in a Mexican oak forest. Flora 272:151704. https://doi.org/10.1016/j.flora.2020.151704
article
Google Scholar
Ding Y, Liu G, Zang R, Zhang J, Lu X, Huang J (2016) Distribution of vascular epiphytes along a tropical elevational gradients: disentangling abiotic and biotic determinants. Sci Rep 6:19706. https://doi.org/10.1038/srep19706
Article
CAS
PubMed
PubMed Central
Google Scholar
Dormann CF ( 2011 ) How to be a specialist ? quantify specialization in pollination network . Netw Biol 1:1–20
Google Scholar
Dormann CF, Strauss R (2014) A method for detecting modules in quantitative bipartite networks. Methods Ecol Evol 5:90–98 : 10.1111/2041- 210X.12139
article
Google Scholar
Dormann CF, Gruber B, Früend J (2008) Introducing the bipartite package: analysing ecological networks. R News 8:8–11
Google Scholar
Einzmann HJR is affects , Beyschlag J , Hofhansl F , Wanek W , Zotz g ( 2015 ) host tree phenology is affects affect vascular epiphyte at the physiological , demographic and community level . AoB plant 7 : plu073 . https://doi.org/10.1093/aobpla/plu073
Article
CAS
Google Scholar
Estrada – Sánchez I , García – Cruz J , Espejo – Serna A , López – Ortega g ( 2019 ) identification of area of endemism in the mexican cloud forest base on the distribution of endemic epiphytic bromeliad and orchid . Phytotaxa 397:129–145 . https://doi.org/10.11646/phytotaxa.397.2.1
article
Google Scholar
Flores-Argüelles A, Espejo-Serna A, López-Ferrari AR, Krömer T (2022) Diversity and vertical distribution of epiphytic angiosperms, in natural and 68 disturbed forests on the Northern Coast of Jalisco, Mexico. Front Glob Change 5:828851. https://doi.org/10.3389/ffgc.2022.828851
article
Google Scholar
Francisco TM , Couto DR , Evans DM , Garbin ML , Ruiz – Miranda CR ( 2018 ) structure and robustness of an epiphyte – phorophyte commensalistic network in a neotropical inselberg . Austral Ecol 43:903–914 . https://doi.org/10.1111/aec.12640
article
Google Scholar
Francisco TM, Couto DR, Garbin ML, Muylaert RL, Ruiz-Miranda CR (2019) Low modularity and specialization in a commensalistic epiphyte–phorophyte network in a tropical cloud forest. Biotropica 51:509–518. 10.1111/ btp.12670
article
Google Scholar
González-Espinosa M, Meave JA, Ramírez-Marcial N, Toledo-Aceves T, Lorea-Hernández FG, Ibarra-Manríquez G (2012) Los bosques de niebla de México: conservación y restauración de su componente arbóreo. Ecosistemas 21:36–52
Google Scholar
González – Rocha E , Espejo – Serna A , López – Ferrari AR , Cerros – Tlatilpa r ( 2016 ) Las Bromeliaceae Del Estado De Morelos . Universidad Autónoma Metropolitana , Mexico City
Google Scholar
Gotsch SG, Nadkarni NM, Amici AA (2016) The functional roles of epiphytes and arboreal soils in tropical montane cloud forest. J Trop Ecol 32:455–468. https://doi.org/10.1017/S026646741600033X
article
Google Scholar
Gotsch SG , Dawson TE , Draguljić D ( 2018 ) variation in the resilience of cloud forest vascular epiphyte to severe drought . New Phytol 219:900–913 . https://doi.org/10.1111/nph.14866
article
PubMed
Google Scholar
Haberman SJ (1973) The analysis of residuals in cross-classified tables. Biometrics 29:205–220. https://doi.org/10.2307/2529686
article
Google Scholar
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software package for education and data analysis. Palaeontol Electron 4:1–9
Google Scholar
Hernández – Cárdenas RA ( 2014 ) Las Plantas Vasculares Y vegetación De La Barranca Tepecapa en El Municipio De Tlayacapan , Morelos , México . Acta Bot Mex 108:11–38 . https://doi.org/10.21829/abm108.2014.200
article
Google Scholar
Hernández – Pérez E , Solano E , Ríos – Gómez r ( 2018 ) host affinity and vertical distribution of epiphytic orchid in a montane cloud forest in southern Mexico . Bot Sci 96:200–217 . https://doi.org/10.17129/botsci.1869
article
Google Scholar
Hoeber V, Zotz G (2022) Accidental epiphytes: ecological insights and evolutionary implications. Ecol Monogr 92:e1527. https://doi.org/10.1002/ecm.1527
article
Google Scholar
Hu H-X, Shen T, Quan D-L, Nakumura A, Song L (2021) Structuring interaction networks between epiphytic bryophytes and their hosts in Yunnan, SW. China. Front Glob Change 4:716278. https://doi.org/10.3389/ffgc.2021.716278
article
Google Scholar
INEGI (Instituto Nacional de Estadística y Geografía) (2015) Guía para la interpretación de cartografía. Uso del suelo y vegetación. Escala 1:250000. Serie V. https://www.inegi.org.mx/contenidos/temas/mapas/usosuelo/metadatos/guia_interusosuelov.pdf [Accessed 07 February 2024]
Johansson D (1974) Ecology of vascular epiphytes in a west African rain forest. Acta Phytogeogr Suec 59:66–77
Google Scholar
Johnson RA is Applied , Wichern DW ( 2002 ) apply multivariate statistical analysis . Prentice Hall , Upper Saddle River , New Jersey
Google Scholar
Jordano P (1987) Patterns of mutualistic interactions in polliniation and seed dispersal: connectance, dependence asymmetries, and coevolution. Am Nat 129:657–667
article
Google Scholar
Jordano P (2016) Sampling networks of ecological interactions. Funct Ecol 30:1883–1893. https://doi.org/10.1111/1365-2435.12763
article
Google Scholar
Jordano P , Vázquez D , Bascompte J ( 2009 ) Redes complejas de interaccione planta – animal . In : Medel R , Aizen MA , Zamora R ( eds ) Ecología y evolución de interaccione planta – animal . Universitaria is pp , Santiago de Chile , Chile , pp 17–41
Google Scholar
Jost L ( 2006 ) entropy and diversity . Oikos 113:363–375 . https://doi.org/10.1111/j.2006.0030-1299.14714.x
article
Google Scholar
Karger DN, Kessler M, Lehnert M, Jetz W (2021) Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide. Nat Ecol Evol 5:854–862. https://doi.org/10.1038/s41559-021-01450-y
article
PubMed
Google Scholar
Klanderud K (2005) Climate change effects on species interactions in an alpine plant community. J Ecol 93:127–137. https://doi.org/10.1111/j.1365-2745.2004.00944.x
article
Google Scholar
Köster N, Nieder J, Barthlott W (2011) Effect of host tree traits on epiphyte diversity in natural and anthropogenic habitats in Ecuador. Biotropica 43:685–694. https://doi.org/10.1111/j.1744-7429.2011.00759.x
article
Google Scholar
Kress JW ( 1986 ) The systematic distribution of vascular epiphyte : an update . Selbyana 9:2–22
Google Scholar
Krömer T, Kessler M, Gradstein SR (2007) Vertical stratification of vascular epiphytes in submontane and montane forests of the Bolivian Andes: the importance of the understory. Plant Ecol 189:261–278. https://doi.org/10.1007/s11258-006-9182-8
article
Google Scholar
Martínez-Meléndez N, Pérez-Farrera MA, Flores-Palacios A (2008) Vertical stratification and host preference of vascular epiphytes from a cloud forest of Chiapas, Mexico. Rev Biol Trop 56:2069–2086. https://doi.org/10.15517/rbt.v56i4.5780
article
Google Scholar
Mehltreter K, Flores-Palacios A, García-Franco JG (2005) Host preferences of low-trunk vascular epiphytes in a cloud forest of Veracruz, Mexico. J Trop Ecol 21:651–660. https://doi.org/10.1017/S0266467405002683
article
Google Scholar
Mehltreter K , Walker LR , Sharpe JM ( 2010 ) Fern Ecology . Cambridge University Press , New York
Book
Google Scholar
Mickel JT , Smith AR ( 2004 ) The pteridophyte of Mexico . New York Botanical Garden , New York
Google Scholar
Morales – Castilla I , Matias MG , Gravel D , Araujo mb ( 2015 ) infer biotic interaction from proxy . trend Ecol Evol 30:347–356 . https://doi.org/10.1016/j.tree.2015.03.014
article
PubMed
Google Scholar
Morales-Linares J, García-Franco JG, Flores-Palacios A, Valenzuela-González JE, Mata-Rosas M, Díaz-Castelazo C (2017) Spatial structure of ant-gardens: vertical distribution on host trees and succession/segregation of associated vascular epiphytes. J Veg Sci 28:1036–1046. https://doi.org/10.1111/jvs.12559
article
Google Scholar
Morales-Linares J, García-Franco JG, Flores-Palacios A, Krömer T, Toledo-Aceves T (2020) The role of shaded cocoa plantations in the maintenance of epiphytic orchids and their interactions with phorophytes. J Plant Ecol 13:27–35. https://doi.org/10.1093/jpe/rt052
article
Google Scholar
Naranjo C , Iriondo JM , Riofrio ML , Lara – Romero C ( 2019 ) evaluate the structure of commensalistic epiphyte – phorophyte network : a comparative perspective of biotic interaction . AoB plant 11 : plz011 . https://doi.org/10.1093/aobpla/plz011
Article
PubMed
PubMed Central
Google Scholar
Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH (2007) The vegan package. Community Ecol Package 10:631–637
Google Scholar
Patefield WM (1981) Algorithm AS 159: an efficient method of generating random R × C tables with given row and column totals. J R Stat Soc C-Appl 30:91–97. https://doi.org/10.2307/2346669
article
Google Scholar
Piazzon M, Larrinaga AR, Santamaría L (2011) Are nested networks more robust to disturbance? A test using epiphyte-tree, comensalistic networks. PLoS ONE 6:e19637. https://doi.org/10.1371/journal.pone.0019637
Article
CAS
PubMed
PubMed Central
Google Scholar
R Core Team (2023) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.Rproject.org/
Ramírez-Martínez A, Mondragón D, Valverde T, Chávez-Servia JL (2018) Spatial variation in host preference in the endangered epiphytic bromeliad Tillandsia Carlos – Hankii. Acta Oecol 92:75–84. https://doi.org/10.1016/j.actao.2018.08.008
article
Google Scholar
Reyes-García C, Pereira-Zaldívar NA, Espadas-Manrique C, Tamayo-Chim M, Chilpa-Galván N, Cach-Pérez MJ, Ramírez-Medina M, Benavides AM, Hietz P, Zotz G, Andrade JL, Cardelús C, de Paula-Oliveira R, Einzmann HJR, Guzmán-Jacob V, Krömer T, Pinzón JP, Sarmento-Cabral J, Wanek W, Woods C (2022) New proposal of epiphytic Bromeliaceae functional groups to include nebulophytes and shallow tanks. Plants 11:3151. https://doi.org/10.3390/plants11223151
Article
PubMed
PubMed Central
Google Scholar
Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D, Ripley MB (2013) Package mass. Cran r 538:113–120
Google Scholar
Robles-Molina M, Martínez-Camilo R, Martínez-Meléndez N, Farrera MA (2018) Diversidad Y distribución vertical de bromeliáceas epífitas en un bosque de niebla en Chiapas, México. Lacandonia 12:7–18
Google Scholar
Ruiz-Cordova JP, Toledo-Hernández VH, Flores-Palacios A (2014) The effect of substrate abundance in the vertical stratification of bromeliad epiphytes in a tropical dry forest (Mexico). Flora 209:375–384. https://doi.org/10.1016/j.flora.2014.06.003
article
Google Scholar
Rumeu B, Devoto M, Traveset A, Olesen JM, Vargas P, Nogales M, Heleno R (2017) Predicting the consequences of disperser extinction: richness matters the most when abundance is low. Funct Ecol 31:1910–1920. https://doi.org/10.1111/1365-2435.12897
article
Google Scholar
Rzedowski J (1978) Vegetación De México. Limusa, Mexico
Google Scholar
Sanford VW (1968) Distribution of epiphytic orchids in semideciduos tropical forest in southern Nigeria. J Ecol 56:697–705. https://doi.org/10.2307/2258101
article
Google Scholar
Sáyago R , Lopezaraiza – Mikel M , Quesada M , Alvarez – Anorve MY , Cascante – Marín A , Bastida JM ( 2013 ) evaluate factor that predict the structure of a commensalistic epiphyte – phorophyte network . Proc Royal Soc B 280:20122821 . https://doi.org/10.1098/rspb.2012.2821
article
Google Scholar
Shen T, Song L, Collart F, Guisan A, Su Y, Hu H-X, Wu Y, Dong J-L, Vanderpoorten A (2022) What makes a good phorophyte? Predicting occupancy, species richness and abundance of vascular epiphytes in a lowland seasonal tropical forest. Front Glob Change 5:1007473. https://doi.org/10.3389/ffgc.2022.1007473
article
Google Scholar
Siegel S, Castellan NJ (2005) Estadística no paramétrica aplicada a las ciencias de la conducta. Trillas, Mexico City
Google Scholar
Spicer ML , Woods CL ( 2022 ) A case for study biotic interaction in epiphyte ecology and evolution . Perspect Plant Ecol 54:125658 . https://doi.org/10.1016/j.ppees.2021.125658
article
Google Scholar
Stanton DE, Huallpa-Chavez J, Villegas L, Villasante F, Armesto J, Hedin LO, Horn H (2014) Epiphytes improve host plant water use by microenvironment modification. Funct Ecol 28:1274–1283. https://doi.org/10.1111/1365-2435.12249
article
Google Scholar
Taylor A, Saldaña A, Zotz G, Kirby C, Díaz I, Burns K (2016) Composition patterns and network structure of epiphyte-host interactions in Chilean and New Zealand temperate forests. New Zeal J Bot 54:204–222. https://doi.org/10.1080/0028825X.2016.1147471
article
Google Scholar
Taylor A, Zotz G, Weigelt P, Cai L, Karger DN, König C, Kreft H (2022) Vascular epiphytes contribute disproportionately to global centres of plant diversity. Global Ecol Biogeogr 31:62–74. https://doi.org/10.1111/geb.13411
article
Google Scholar
Valencia – Díaz S , Flores – Palacios A , Rodríguez – López V , Ventura – Zapata e , Jiménez – Aparicio AR ( 2010 ) effect of host – bark extract on seed germination inTillandsia recurvata, an epiphytic bromeliad. J Trop Ecol 26:571–581. https://doi.org/10.1017/S0266467410000374
article
Google Scholar
Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A, Galetti M, Zamora R (2015) Beyond species loss: the extinction of ecological interactions in a changing world. Funct Ecol 29:299–307. https://doi.org/10.1111/1365-2435.12356
article
Google Scholar
Vergara – Rodriguez D , Mathieu G , Samain M – S , Armenta – Montero S , Kromer T ( 2017 ) diversity , distribution , and conservation status ofPeperomia (Piperaceae) in the state of Veracruz, Mexico. Trop Conserv Sci 10:1–28. https://doi.org/10.1177/1940082917702383
article
Google Scholar
Vergara-Torres CA, Pacheco-Álvarez MC, Flores-Palacios A (2010) Host preference and host limitation of vascular epiphytes in a tropical dry forest of central Mexico. J Trop Ecol 26:563–570. https://doi.org/10.1017/S0266467410000349
article
Google Scholar
Victoriano – Romero E , Figueroa – Castro DM ( 2024 ) neutral plant – plant association predominate in the community of vascular epiphyte in a cloud forest in Central Mexico . Int J Plant Sci Doi . https://doi.org/10.1086/730786
article
Google Scholar
Victoriano – Romero E , Valencia – Díaz S , García – Franco JG , Mehltreter K , Toledo – Hernández VH , Flores – Palacios A ( 2023 ) interaction between epiphyte during canopy soil formation and experiment in a low mountain cloud forest of southeast Mexico . Plant Biol 25:468–477 . https://doi.org/10.1111/plb.13501
article
CAS
PubMed
Google Scholar
Wagner K, Mendieta-Leiva G, Zotz G (2015) Host specificity in vascular epiphytes: a review of methodology, empirical evidence and potential mechanisms. AoB Plants 7:plu092. https://doi.org/10.1093/aobplan/plu092
Article
PubMed
PubMed Central
Google Scholar
Wagner K, Wanek W, Zotz G (2021) Functional traits of a rainforest vascular epiphyte community: trait covariation and indications for host specificity. Diversity 13:97. https://doi.org/10.3390/d13020097
Article
CAS
Google Scholar
Wang X, Long W, Schamp BS, Yang X, Kang Y, Xie Z, Xiong M (2016) Vascular epiphyte diversity differs with host crown zone and diameter, but not orientation in a tropical cloud forest. PLoS ONE 11:e0158548. https://doi.org/10.1371/journal.pone.0158548
Article
CAS
PubMed
PubMed Central
Google Scholar
Wester S , Zotz g ( 2010 ) growth and survival ofTillandsia flexuosa on electrical cables in Panama. J Trop Ecol 26:123–126. https://doi.org/10.1017/S0266467409990459
article
Google Scholar
Williams-Linera G, Manson RH, Vera EI (2002) La fragmentación Del bosque mesófilo de montaña y patrones de uso del suelo en la región oeste de Xalapa, Veracruz, México. Madera Bosques 8:73–89. https://doi.org/10.21829/myb.2002.811307
article
Google Scholar
Wolf JHD, Flamenco A (2003) Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. J Biogeogr 30:1689–1707. https://doi.org/10.1046/j.1365-2699.2003.00902.x
article
Google Scholar
Wu Y, Liu W-Y, Lu H-Z, Li S, Shen Y-X, Liu W-G, Song L (2020) Stoichiometric and isotopic flexibility: facultative epiphytes exploit rock and bark interchangeably. Environ Exp Bot 179:104208. https://doi.org/10.1016/j.envexpbot.2020.104208
Article
CAS
Google Scholar
Zhao M , Geekiyanage N , Xu J , Khin MM , Nurdiana DR , Paudel E , Harrison RD ( 2015 ) structure of the epiphyte community in a tropical montane forest in SW China . PLoS ONE 10 : e0122210 . https://doi.org/10.1371/journal.pone.0122210
article
CAS
PubMed
Google Scholar
Zotz g ( 2016 ) plant on plant . The biology of vascular epiphyte . Springer International Publishing , Cham , Switzerland
Book
Google Scholar
Zotz G, Andrade JL, Einzmann EJR (2023) CAM plants: their importance in epiphyte communities and prospects with global change. Ann Bot 132:685–698. https://doi.org/10.1093/aob/mcac158
Article
CAS
PubMed
PubMed Central
Google Scholar