Document
ACP

ACP

Albrecht, B.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989.

Related articles

OneDrive vs Dropbox: What’s the Best Cloud Storage 2024? Unblock Movierulz With A Reliable VPN: Stream Safely And Anonymously Adobe Creative Cloud Discounts, Sales & Deals (40-70% Off) 2023 Is Netflix Finally Cracking Down on VPNs On Cloudeclipse review: The best cushioned running sneakers

Albrecht, B.: Aerosols, Cloud Microphysics, and Fractional Cloudiness,
Science, 245, 1227–1230,
https://doi.org/10.1126/science.245.4923.1227, 1989. 

Andreae , M. O. and Rosenfeld , D. : aerosol – cloud – precipitation
interaction . Part 1 . The nature and source of cloud – active aerosol ,
Earth – Sci . Rev. , 89 , 13–41 ,
https://doi.org/10.1016/j.earscirev.2008.03.001 , 2008 .  

Bennartz, R.: Global assessment of marine boundary layer cloud droplet
number concentration from satellite, J. Geophys. Res.-Atmos., 112, D02201,
https://doi.org/10.1029/2006JD007547, 2007. 

Borys, R. D., Lowenthal, D. H., and Mitchell, D. L.: The relationships among
cloud microphysics, chemistry, and precipitation rate in cold mountain
clouds, Atmos. Environ., 34, 2593–2602,
https://doi.org/10.1016/S1352-2310(99)00492-6, 2000. 

Chang, D. Y., Lelieveld, J., Steil, B., Yoon, J., Yum, S. S., and Kim, A.
H.: Variability of aerosol-cloud interactions induced by different cloud
droplet nucleation schemes, Atmos. Res., 250, 105367,
https://doi.org/10.1016/j.atmosres.2020.105367, 2021. 

Che , H. , Zhang , x.-y. , Xia , X. , Goloub , P. , Holben , B. , Zhao , H. , Wang , Y. , Zhang , X.-C. , Wang , H. , Blarel , L. , Damiri , B. , Zhang , R. , Deng , X. , Ma , Y. , Wang , T. , Geng , F. , Qi , B. , Zhu , J. , Yu , J. , Chen , Q. , and Shi , G. : Ground – base aerosol climatology of China : aerosol optical depth from the China Aerosol Remote Sensing Network ( CARSNET ) 2002–2013 , Atmos . Chem . Phys . , 15 , 7619–7652 , https://doi.org/10.5194/acp-15-7619-2015 , 2015 .  

Che , H. C. , Zhang , X. Y. , Zhang , L. , Wang , Y. Q. , Zhang , Y. M. , Shen , X. J. ,
Ma , Q. L. , Sun , J. Y. , and Zhong , J. T. : Prediction of size – resolve number
concentration of cloud condensation nucleus and long – term measurement of
their activation characteristic , Sci . Rep.-UK , 7 , 5819 ,
https://doi.org/10.1038/s41598-017-05998-3 , 2017 .  


Chen , D. and Shen , X. : recent Progress on grape Research and
Application , J. Appl . Meteorol . Sci . , 17 , 773–777 , 2006 .  


Chen, D. H., Xue, J., Yang, X., Zhang, H., Shen, X., Hu, J., Wang, Y., Ji,
L., and Chen, J.: New generation of multi-scale NWP system (GRAPES): general
scientific design, Chinese Sci. Bull., 53, 3433–3445, 2008. 


Chen, F. and Dudhia, J.: Coupling an advanced land surface–hydrology model
with the Penn State–NCAR MM5 modeling system. Part I: Model implementation
and sensitivity, Mon. Weather Rev., 129, 569–585, 2001. 

Chou, M.-D., Suarez, M., Ho, C.-H., Yan, M., and Lee, K.-T.:
Parameterizations for Cloud Overlapping and Shortwave Single-Scattering
Properties for Use in General Circulation and Cloud Ensemble Models, J. Climate, 11, 202–214,
https://doi.org/10.1175/1520-0442(1998)011<0202:PFCOAS>2.0.CO;2, 1998. 

DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D.,
Twohy, C. H., Richardson, M. S., Eidhammer, T., and Rogers, D. C.:
Predicting global atmospheric ice nuclei distributions and their impacts on
climate, P. Natl. Acad. Sci. USA, 107, 11217–11222,
https://doi.org/10.1073/pnas.0910818107, 2010. 


Ding, S., Zhao, C., Shi G., and Wu, C.: Analysis of global total cloud
amount variation over the past 20 years, Journal of Applied Meteorological
Science, 16, 670–677, 2005. 

Ekman, A. M. L., Engström, A., and Söderberg, A.: Impact of Two-Way
Aerosol–Cloud Interaction and Changes in Aerosol Size Distribution on
Simulated Aerosol-Induced Deep Convective Cloud Sensitivity, J.
Atmos. Sci., 68, 685–698, https://doi.org/10.1175/2010JAS3651.1,
2011. 

Fan, J., Wang, Y., Rosenfeld, D., and Liu, X.: Review of Aerosol–Cloud
Interactions: Mechanisms, Significance, and Challenges, J.
Atmos. Sci., 73, 4221–4252,
https://doi.org/10.1175/JAS-D-16-0037.1, 2016. 

Gong , S. L. and Zhang , X. Y. : CUACE / Dust – an integrated system of observation and modeling system for operational dust forecasting in Asia , Atmos . Chem . Phys . , 8 , 2333–2340 , https://doi.org/10.5194/acp-8-2333-2008 , 2008 .  


Hahn, C. J., Rossow, W. B., and Warren, S. G.: ISCCP cloud properties
associated with standard cloud types identified in individual surface
observations, J. Climate, 14, 11–28, 2001. 

Hong, S.-Y. and Pan, H.-L.: Nonlocal Boundary Layer Vertical Diffusion in a
Medium-Range Forecast Model, Mon. Weather Rev., 124, 2322–2339,
https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2, 1996. 


Hong, S. Y. and Lim, J. O.: The WRF single-moment 6-class microphysics
scheme (WSM6), J. Korean Meteor. Soc., 42, 129–151, 2006. 

Huang, X. and Ding, A.: Aerosol as a critical factor causing forecast biases
of air temperature in global numerical weather prediction models, Sci.
Bull., 66, 1917–1924, https://doi.org/10.1016/j.scib.2021.05.009, 2021. 

Hudson , J. G. and Noble , S. : CCN and Vertical Velocity Influences
on Droplet Concentrations and Supersaturations in Clean and polluted Stratus
Clouds , J. Atmos . Sci . , 71 , 312–331 ,
https://doi.org/10.1175/jas-d-13-086.1 , 2014 .  

Kain, J. S. and Fritsch, J. M.: Convective Parameterization for Mesoscale
Models: The Kain-Fritsch Scheme, in: The Representation of Cumulus
Convection in Numerical Models, edited by: Emanuel, K. A. and Raymond, D.
J., American Meteorological Society, Boston, MA, 165–170,
https://doi.org/10.1007/978-1-935704-13-3_16, 1993. 

Lawand, D., Bhakare, S., Fadnavis, S., Bhawar, R., Rahul, P., Pallath, P.,
and Lolli, S.: Variability of Aerosols and Clouds Over North Indian and
Myanmar During the COVID-19 Lockdown Period, Front. Environ.
Sci., 10, 838778, https://doi.org/10.3389/fenvs.2022.838778, 2022. 

Li, M., Zhang, Q., Streets, D. G., He, K. B., Cheng, Y. F., Emmons, L. K., Huo, H., Kang, S. C., Lu, Z., Shao, M., Su, H., Yu, X., and Zhang, Y.: Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms, Atmos. Chem. Phys., 14, 5617–5638, https://doi.org/10.5194/acp-14-5617-2014, 2014. 

Li , M. , Liu , H. , Geng , G. , Hong , C. , Liu , F. , Song , Y. , Tong , D. , Zheng , B. ,
Cui , H. , Hanyang , M. , Zhang , Q. , and He , K. : Anthropogenic emission
inventory in China : A review , Nat . Sci . Rev. , 4 , 834–866 ,
https://doi.org/10.1093/nsr/nwx150 , 2017 .  

Lim , K.-S. S. and Hong , S.-Y. : Development of an effective double – moment
Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei ( CCN )
for Weather and Climate Models , Mon . Weather Rev. , 138 , 1587–1612 ,
https://doi.org/10.1175/2009MWR2968.1 , 2010 .  

Listowski, C. and Lachlan-Cope, T.: The microphysics of clouds over the Antarctic Peninsula – Part 2: modelling aspects within Polar WRF, Atmos. Chem. Phys., 17, 10195–10221, https://doi.org/10.5194/acp-17-10195-2017, 2017. 

Liu, S., Xing, J., Zhao, B., Wang, J., Wang, S., Zhang, X., and Ding, A.:
Understanding of Aerosol–Climate Interactions in China: Aerosol Impacts on
Solar Radiation, Temperature, Cloud, and Precipitation and Its Changes Under
Future Climate and Emission Scenarios, Current Pollution Reports, 5, 36–51,
https://doi.org/10.1007/s40726-019-00107-6, 2019. 

Lohmann , U. and Feichter , J. : global indirect aerosol effect : a review , Atmos . Chem . Phys . , 5 , 715–737 , https://doi.org/10.5194/acp-5-715-2005 , 2005 .  

Lu , C. , Liu , Y. , Niu , S. , and Vogelmann , A. M. : observed impact of vertical
velocity on cloud microphysic and implication for aerosol indirect
effect , Geophys . Res . Lett . , 39 , L21808 ,
https://doi.org/10.1029/2012GL053599 , 2012 .  

Makar, P. A., Gong, W., Milbrandt, J., Hogrefe, C., Zhang, Y., Curci, G.,
Žabkar, R., Im, U., Balzarini, A., Baró, R., Bianconi, R., Cheung,
P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A.,
Jiménez-Guerrero, P., Langer, M., Moran, M. D., Pabla, B., Pérez, J.
L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., Zhang, J.,
and Galmarini, S.: Feedbacks between air pollution and weather, Part 1:
Effects on weather, Atmos. Environ., 115, 442–469,
https://doi.org/10.1016/j.atmosenv.2014.12.003, 2015. 

Mao , K. , Yuan , Z. , Zuo , Z. , Xu , T. , Shen , X. , and Gao , C. :   change in Global
Cloud Cover base on Remote Sensing Data from 2003 to 2012 , Chinese
Geogr . Sci . ,   29 , 306–315 ,
https://doi.org/10.1007/s11769-019-1030-6 , 2019 .  

McCoy , D. T. , Field , P. R. , Schmidt , A. , Grosvenor , D. P. , Bender , F. A.-M. , Shipway , B. J. , Hill , A. A. , Wilkinson , J. M. , and Elsaesser , G. S. : Aerosol midlatitude cyclone indirect effect in observation and high – resolution simulation , Atmos . Chem . Phys . , 18 , 5821–5846 , https://doi.org/10.5194/acp-18-5821-2018 , 2018 .  

McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O’Dowd, C. D., Snider, J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties on warm cloud droplet activation, Atmos. Chem. Phys., 6, 2593–2649, https://doi.org/10.5194/acp-6-2593-2006, 2006. 

Miltenberger, A. K., Field, P. R., Hill, A. A., Rosenberg, P., Shipway, B. J., Wilkinson, J. M., Scovell, R., and Blyth, A. M.: Aerosol–cloud interactions in mixed-phase convective clouds – Part 1: Aerosol perturbations, Atmos. Chem. Phys., 18, 3119–3145, https://doi.org/10.5194/acp-18-3119-2018, 2018. 

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S.
A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, https://doi.org/10.1029/97JD00237, 1997. 

Morrison , H. , Thompson , G. , and Tatarskii , v. : Impact of Cloud Microphysics
on the Development of Trailing Stratiform Precipitation in a Simulated
Squall Line : Comparison of One- and Two – Moment Schemes , Mon . Weather
Rev. , 137 , 991–1007 , https://doi.org/10.1175/2008mwr2556.1 , 2009 .  

Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp-13-1853-2013, 2013. 

National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce: NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and
Forecast Grids, Research Data Archive at the National Center for Atmospheric Research,
Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D65Q4T4Z,
2015. 

NASA/LARC/SD/ASDC: CALIPSO Lidar Level 2 Vertical Feature Mask (VFM),
V4-20, NASA Langley Atmospheric Science Data Center [data set],
https://doi.org/10.5067/CALIOP/CALIPSO/LID_L2_VFM-STANDARD-V4-20, 2018. 

Platnick, S., Meyer, K. G., Hubanks, P., Holz, R., Ackerman, S. A., and Heidinger, A.
K.: VIIRS Atmosphere L3 Cloud Properties Product, Version-1.1, NASA Level-1 and Atmosphere
Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC), Goddard
Space Flight Center, USA [data set],
https://doi.org/10.5067/VIIRS/CLDPROP_D3_VIIRS_SNPP.011, 2019. 

Pawlowska, H. and Brenguier, J.-L.: Microphysical properties of
stratocumulus clouds during ACE-2, Tellus B, 52, 868–887,
https://doi.org/10.1034/j.1600-0889.2000.00076.x, 2000. 

Pleim, J.: A Combined Local and Nonlocal Closure Model for the Atmospheric
Boundary Layer. Part II: Application and Evaluation in a Mesoscale
Meteorological Model, J. Appl. Meteorol. Clim., 46, 1396–1409,
https://doi.org/10.1175/JAM2534.1, 2007. 

Pruppacher , H. R. and Klett , J. D. : microphysic of Clouds and
Precipitation , Nature , 284 , 88–88 , https://doi.org/10.1038/284088b0 , 1980 .  

Quaas, J.: Approaches to Observe Anthropogenic Aerosol-Cloud Interactions,
Current Climate Change Reports, 1, 297–304,
https://doi.org/10.1007/s40641-015-0028-0, 2015. 

Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T.,
Washington, W. M., Fu, Q., Sikka, D. R., and Wild, M.: Atmospheric brown
clouds: Impacts on South Asian climate and hydrological cycle, P.
Natl. Acad. Sci. USA, 102, 5326–5333,
https://doi.org/10.1073/pnas.0500656102, 2005. 

Rosenfeld, D., Andreae, M. O., Asmi, A., Chin, M., de Leeuw, G., Donovan, D.
P., Kahn, R., Kinne, S., Kivekäs, N., Kulmala, M., Lau, W., Schmidt, K.
S., Suni, T., Wagner, T., Wild, M., and Quaas, J.: Global observations of
aerosol-cloud-precipitation-climate interactions, Rev. Geophys., 52,
750–808, https://doi.org/10.1002/2013RG000441, 2014. 

Rosenfeld, D., Zhu, Y., Wang, M., Zheng, Y., Goren, T., and Yu, S.:
Aerosol-driven droplet concentrations dominate coverage and water of oceanic
low-level clouds, Science, 363, eaav0566,
https://doi.org/10.1126/science.aav0566, 2019. 

Rossow, W. B. and Schiffer, R. A.: ISCCP Cloud Data Products, B.
Am. Meteorol. Soc., 72, 2–20,
https://doi.org/10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2, 1991. 

Seifert, A., Köhler, C., and Beheng, K. D.: Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model, Atmos. Chem. Phys., 12, 709–725, https://doi.org/10.5194/acp-12-709-2012, 2012. 

Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X.: The second
generation regional acid deposition model chemical mechanism for regional
air quality modeling, J. Geophys. Res.-Atmos., 95,
16343–16367, https://doi.org/10.1029/JD095iD10p16343, 1990. 

Su, L. and Fung, J. C. H.: Investigating the role of dust in ice nucleation within clouds and further effects on the regional weather system over East Asia – Part 1: model development and validation, Atmos. Chem. Phys., 18, 8707–8725, https://doi.org/10.5194/acp-18-8707-2018, 2018. 

Sun , J. and Ariya , P. A. : atmospheric organic and bio – aerosol as cloud
condensation nucleus ( CCN ): A review , Atmos . Environ . , 40 , 795–820 ,
https://doi.org/10.1016/j.atmosenv.2005.05.052 , 2006 .  

Thompson, G. and Eidhammer, T.: A Study of Aerosol Impacts on Clouds and
Precipitation Development in a Large Winter Cyclone, J.
Atmos. Sci., 71, 3636–3658,
https://doi.org/10.1175/JAS-D-13-0305.1, 2014. 


Thompson, G., Rasmussen, R. M., and Manning, K.: Explicit forecasts of
winter precipitation using an improved bulk microphysics scheme. Part I:
Description and sensitivity analysis, Mon. Weather Rev., 132, 519–542, 2004. 


Thompson , G. , Field , P. R. , Rasmussen , R. M. , and Hall , W. D. : Explicit
forecast of winter precipitation using an improved bulk microphysic
scheme . Part II : implementation of a new snow parameterization , Mon . Weather
Rev. , 136 , 5095–5115 , 2008 .  

Twomey, S.: The Influence of Pollution on the Shortwave Albedo of Clouds,
J. Atmos. Sci., 34, 1149–1154,
https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977. 

Wang , H. , Gong , S. , Zhang , H. , Chen , Y. , Shen , X. , Chen , D. , Xue , J. , Shen ,
Y. , Wu , X. , and Jin , Z. : A new – generation sand and dust storm forecasting
system GRAPES_CUACE / dust : Model development , verification and
numerical simulation , Chinese Sci . Bull . , 55 , 635–649 ,
https://doi.org/10.1007/s11434-009-0481-z , 2010 .  

Wang , K. , Zhang , Y. , Yu , S. , Wong , D. C. , Pleim , J. , Mathur , R. , Kelly , J. T. , and Bell , M. : A comparative study of two – way and offline couple WRF v3.4 and CMAQ v5.0.2 over the contiguous US : performance evaluation and impact of chemistry – meteorology feedback on air quality , Geosci . Model Dev . , 14 , 7189–7221 , https://doi.org/10.5194/gmd-14-7189-2021 , 2021 .  

Wang, Z., Zhang, H., and Lu, P.: Improvement of cloud microphysics in the
aerosol-climate model BCC_AGCM2.0.1_CUACE/Aero, evaluation against observations, and updated aerosol indirect
effect, J. Geophys. Res.-Atmos., 119, 8400–8417,
https://doi.org/10.1002/2014JD021886, 2014. 

White , B. , Gryspeerdt , E. , Stier , P. , Morrison , H. , Thompson , G. , and Kipling , Z. : Uncertainty is exceeds from the choice of microphysic scheme in convection – permit model significantly exceed aerosol effect , Atmos . Chem . Phys . , 17 , 12145–12175 , https://doi.org/10.5194/acp-17-12145-2017 , 2017 .  

Wong, D. C., Pleim, J., Mathur, R., Binkowski, F., Otte, T., Gilliam, R., Pouliot, G., Xiu, A., Young, J. O., and Kang, D.: WRF-CMAQ two-way coupled system with aerosol feedback: software development and preliminary results, Geosci. Model Dev., 5, 299–312, https://doi.org/10.5194/gmd-5-299-2012, 2012. 

Xu, X., Lu, C., Liu, Y., Luo, S., Zhou, X., Endo, S., Zhu, L., and Wang, Y.: Influences of an entrainment–mixing parameterization on numerical simulations of cumulus and stratocumulus clouds, Atmos. Chem. Phys., 22, 5459–5475, https://doi.org/10.5194/acp-22-5459-2022, 2022. 

Zhang, B., Wang, Y., and Hao, J.: Simulating aerosol–radiation–cloud feedbacks on meteorology and air quality over eastern China under severe haze conditionsin winter, Atmos. Chem. Phys., 15, 2387–2404, https://doi.org/10.5194/acp-15-2387-2015, 2015. 


Zhang, R. H. and Shen, X.: On the development of the GRAPES – A new
generation of the national operational NWP system in China, Chinese Sci.
Bull., 53, 3429–3432, 2008. 

Zhang, Y., Wen, X. Y., and Jang, C. J.: Simulating
chemistry–aerosol–cloud–radiation–climate feedbacks over the continental
U.S. using the online-coupled Weather Research Forecasting Model with
chemistry (WRF/Chem), Atmos. Environ., 44, 3568–3582,
https://doi.org/10.1016/j.atmosenv.2010.05.056, 2010.

Zhao, B., Liou, K.-N., Gu, Y., Li, Q., Jiang, J. H., Su, H., He, C., Tseng,
H.-L. R., Wang, S., Liu, R., Qi, L., Lee, W.-L., and Hao, J.: Enhanced
PM2.5 pollution in China due to aerosol – cloud interaction , Sci .
Rep.-UK is pollution , 7 , 4453 , https://doi.org/10.1038/s41598-017-04096-8 , 2017 .  

Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018. 

Zheng , G. , Wang , Y. , Aiken , A. C. , Gallo , F. , Jensen , M. P. , Kollias , P. , Kuang , C. , Luke , E. , Springston , S. , Uin , J. , Wood , R. , and Wang , J. : Marine boundary layer aerosol in the eastern North Atlantic : seasonal variation and key controlling process , Atmos . Chem . Phys . , 18 , 17615–17635 , https://doi.org/10.5194/acp-18-17615-2018 , 2018 .  

Zhou, C.-H., Gong, S., Zhang, X.-Y., Liu, H.-L., Xue, M., Cao, G.-L., An,
X.-Q., Che, H.-Z., Zhang, Y.-M., and Niu, T.: Towards the improvements of
simulating the chemical and optical properties of Chinese aerosols using an
online coupled model – CUACE/Aero, Tellus B, 64, 18965, https://doi.org/10.3402/tellusb.v64i0.18965, 2012. 

Zhou, C., Zhang, X., Gong, S., Wang, Y., and Xue, M.: Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system, Atmos. Chem. Phys., 16, 145–160, https://doi.org/10.5194/acp-16-145-2016, 2016. 

Zhou, S., Yang, J., Wang, W.-C., Zhao, C., Gong, D., and Shi, P.: An observational study of the effects of aerosols on diurnal variation of heavy rainfall and associated clouds over Beijing–Tianjin–Hebei, Atmos. Chem. Phys., 20, 5211–5229, https://doi.org/10.5194/acp-20-5211-2020, 2020.