Document
A Machine-Learning-Based Study on All-Day Cloud Classification Using Himawari-8 Infrared Data

A Machine-Learning-Based Study on All-Day Cloud Classification Using Himawari-8 Infrared Data

Figure 1. Illustration of the observation area of the Himawari-8 satellite . Figure 1. Illustration of the observation a

Related articles

Dodging silver bullets: how cloud seeding could go wrong How to set up Surfshark VPN on an AsusWRT router What is Cloud Seeding & Is It to Blame for the Dubai Flooding? Proton VPN Test (2024): How secure is the VPN service really? What Is a VPN? [How It Works & How to Choose One in 2024 ]

Figure 1.
Illustration of the observation area of the Himawari-8 satellite .

Figure 1.
Illustration of the observation area of the Himawari-8 satellite .

figure 2 .
Cloud datum for 10 channel of AHI .

figure 2 .
Cloud datum for 10 channel of AHI .

Figure 3.
General flow diagram .

Figure 3.
General flow diagram.

figure 4 .
Confusion matrix of the AInfraredCCM.

figure 4 .
Confusion matrix of the AInfraredCCM.

figure 5 .
Classification performance graphs of different models. (ae) graph of the precision , recall , and f1 – score of classification result of 5 model in different cloud type .

figure 5 .
Classification performance graphs of different models. (ae) graph of the precision , recall , and f1 – score of classification result of 5 model in different cloud type .

Figure 6.
Classification result of different model at 05:00 UTC on June 29 , 2019 . (a) visible datum , (b) thermal infrared data, (c) the brightness temperature map ; (dh) sequentially present the classification results of GradientBoost, LightGBM, rf, AdaBoost, and AInfraredCCM, respectively.

Figure 6.
Classification result of different model at 05:00 UTC on June 29 , 2019 . (a) visible datum , (b) thermal infrared data, (c) the brightness temperature map ; (dh) sequentially present the classification results of GradientBoost, LightGBM, rf, AdaBoost, and AInfraredCCM, respectively.

figure 7 .
Evaluation of classification metrics of the AInfraredCCM for daytime/nighttime. (a,b) bar graph of precision , recall , and f1 – score of different type of cloud classification result ; (c,d) confusion matrix of different type of cloud classification in daytime and nighttime .

figure 7 .
Evaluation of classification metrics of the AInfraredCCM for daytime/nighttime. (a,b) bar graph of precision , recall , and f1 – score of different type of cloud classification result ; (c,d) confusion matrix of different types of cloud classification in daytime and nighttime.

Figure 8.
plot of classification result at 04:20 UTC on May 15 , 2019 . (a) rgb ; (b) bright temperature ; (c) ainfraredccm result ; (d,e) CLTYPE, AInfraredCCM results, and label; (f) the combine cloud product of the CPR / CALIOP and Himawari-8 datum ; (g) vertical profile of the cloud type along the orbit of the CPR / CALIOP .

Figure 8.
plot of classification result at 04:20 UTC on May 15 , 2019 . (a) rgb ; (b) bright temperature ; (c) ainfraredccm result ; (d,e) CLTYPE, AInfraredCCM results, and label; (f) the combine cloud product of the CPR / CALIOP and Himawari-8 datum ; (g) vertical profiles of the cloud types along the orbit of the CPR/CALIOP.

figure 9 .
evaluation metric of the model across 4 season ; (ah) are the line graphs and confusion matrix of precision, recall, and f1 – score in 4 seasons.

figure 9 .
evaluation metric of the model across 4 season ; (ah) are the line graphs and confusion matrix of precision, recall, and f1 – score in 4 seasons.

Figure 10.
Bright temperatures (K), AInfraredCCM classification results, and Himawari-8 CLTYPE for different seasons. (ad) Cloud map moments in the following order: 15 May 2019 UTC 02:50; 5 August 2017 UTC 05:00; 10 October 2018 UTC 03:30; and 1 February 2019 UTC 06:40, respectively.

Figure 10.
Bright temperatures (K), AInfraredCCM classification results, and Himawari-8 CLTYPE for different seasons. (ad) Cloud map moments in the following order: 15 May 2019 UTC 02:50; 5 August 2017 UTC 05:00; 10 October 2018 UTC 03:30; and 1 February 2019 UTC 06:40, respectively.

Table 1 .
Himawari-8 band parameter and application .

Table 1 .
Himawari-8 band parameter and application .

Bands Channel Type Center wavelength ( μm ) Spatial
Resolution (km)
Main Applications
7 Midwave IR 3.9 2 Natural disasters, low cloud (fog) observation
8 Water vapor 6.2 2 Observation of water vapor volume in the upper and middle layers
9 6.9 2 observation of water vaporization in the mesosphere
10 7.3 2
11 Longwave IR 8.6 2 Cloud phase identification and SO2 detection
12 9.6 2 Measurement of total ozone
13 10.4 2 Observation of cloud images and cloud top conditions
14 11.2 2 Observation of cloud images and sea surface water temperature
15 12.4 2 Observation of cloud images and sea surface water temperature
16 13.3 2 Measurement of cloud height

Table 2.
Cloud type of this study.

Table 2.
Cloud type of this study.

Cloud Label Label of CPR/CALIOP Label of CLTYPE Name of Cloud
0 0 ( clear ) 0 ( clear ) clear
1 1 ( ci ) 1, 2 (ci, Cs) ci (ci, Cs)
2 8 ( Dc ) 3 (Dc) Dc
3 3 ( Ac ) 4 (Ac) Ac
4 2 ( As ) 5 (As) As
5 7 (n) 6 (n) n
6 6 ( Cu ) 7 ( Cu ) Cu
7 5 (Sc) 8 (Sc) Sc
8 4 (St) 9 ( St ) St

Table 3.
Information of dataset.

Table 3.
Information of dataset.

Dimension number Variables
predictor BTs (10) BT (3.9 μm), BT (6.2 μm), BT (6.9 μm), BT (7.3 μm), BT (8.6 μm), BT (9.6 μm), BT (10.4 μm), BT (11.2 μm), BT (12.4 μm), and BT (13.3 μm)
BTDs (5) BTD (11.2–7.3 μm), BTD (3.9–11.2 μm), BTD (11.2–12.4 μm),
BTD (12.4–10.4 μm), and BTD (7.3–10.4 μm)
Auxiliary data (2) Latitude and Longitude
Prediction 1 Cloud label from 2B-CLDCLASS-LIDAR and CLTYPE

Table 4.
Classification results of the model on dataset C.

Table 4.
Classification results of the model on dataset C.

number of Ever category Total number
number of category A clouds number of category B clouds
Model classification result number of category A clouds TA FB T1
number of category B clouds fa TB T2
Total number AS BS T

Table 5.
parameter of the AInfraredCCM .

Table 5.
parameter of the AInfraredCCM .

Parameter Meaning value
n_estimators number of trees 204
learning_rate Magnitude of the iterative model update 0.2122
max_depth Maximum tree depth 26
min_child_weight Minimum number of samples required in a leaf node 3

Table 6 .
precision, recall, and f1 – score of the AInfraredCCM.

Table 6 .
precision, recall, and f1 – score of the AInfraredCCM.

Cloud Type precision Recall F1-Score
clear 0.85 0.89 0.87
ci 0.90 0.88 0.89
Dc 0.93 0.87 0.90
Ac 0.82 0.74 0.78
As 0.89 0.88 0.89
n 0.95 0.93 0.94
Cu 0.68 0.57 0.60
Sc 0.88 0.93 0.91
St 0.98 0.90 0.94

Table 7.
Optimal parameter combinations for the model.

Table 7.
Optimal parameter combinations for the model.

Algorithm Parameted Range
Random Forest 1 . max_depth = 73
2. n_estimators = 280
LightGBM 1. learning_rate = 0.095
2. max_depth = 22
3. n_estimators = 252
4. num_leaves = 35
AdaBoost 1. learning_rate = 0.4224
2. max_depth = 74
3. n_estimators = 458
4. min_samples_leaf = 1
GradientBoost 1 . learning_rate = 0.4749
2. max_depth = 37
3. n_estimators = 10

Table 8.
Evaluation for different model .

Table 8.
Evaluation for different model .

Algorithm Accuracy precision Recall F1-Score
Random Forest 82.53 % 0.83 0.76 0.79
LightGBM 74.60 % 0.70 0.64 0.66
GradientBoost 80.96% 0.78 0.77 0.78
AdaBoost 85.83% 0.87 0.83 0.85
AInfraredCCM 86.22% 0.88 0.84 0.86

Table 9 .
Cloud classification model statistical table.

Table 9 .
Cloud classification model statistical table.

Model category feature time OA sample Reference
rf Dc, n, Cu, Sc, St, Ac, As, ci, and multi REF is cloud and BT of 13 channel , cloud top height , cloud optical
thickness is cloud , cloud effective radius
day 0.67 272414 Yu et al. (2021) [12]
BP clear, low cloud, middle cloud, thick cirrus clouds, thin cirrus cloud, deep convective IR1 (10.3–11.3), IR2 (11.5–12.5), WV (6.3–7.6), IR1-IR2, IR1-WV, IR2-WV day 0.86 2449 Zhang et al . ( 2012 ) [ 39 ]
CNN clear, ci, Ac, As, Sc, Dc, n, Cu All channel of FY-4A day 0.95 15780 Wang et al. (2023) [40]
rf clear, low cloud, middle cloud, thin cloud, thick cloud, multilayer cloud, cumulonimbus r ( 0.64 ) , r ( 1.6 ) , BT ( 11.2 μm ) , BTD ( 11.2–3.9 μm ) , BTD ( 11.2–7.3 μm ) , BTD ( 11.2–8.6 μm ) , BTD ( 11.2–12.3 μm ) day 0.88 127192 Wang et al . ( 2023 ) [ 41 ]
rf clear, low cloud, middle cloud, thin cloud, thick cloud, multilayer cloud, cumulonimbus BT (11.2 μm), BTD (11.2–3.9 μm), BTD (11.2–7.3 μm), BTD (11.2–8.6 μm), BTD (11.2–12.3 μm) Night 0.79 72934 Wang et al . ( 2023 ) [ 41 ]
rf clear , single , multi BT (3.9 um), BT (7.3 m), BT (8.6 μm),
BT (11.2 μm), BT (12.4 μm),
BTD ( 3.9–11.2 μm ) , BTD ( 8.6–11.2 μm ) , BTD ( 11.2–12.4 μm ) , latitude , longitude
day and night 0.79 12553889 Tan et al. (2022) [16]
DNN clear, single-ice, single-mixed, single-water, multi BT ( 3.9–13.3 μm ) , cosine of satellite zenith angle , simulate clear – sky radiance day and night 0.81 1114591 Li et al . ( 2022 ) [ 17 ]
AInfraredCCM clear, ci, Dc, Ac, As, n, Cu, Sc, St BT ( 3.9–13.3 μm ) , BTD ( 11.2–9.6 μm ) ,
BTD (3.9–11.2 μm), BTD (11.2–12.4 μm), BTD (12.4–10.4 μm), BTD (7.3–10.4 μm), latitude, longitude
day and night 0.86 1314275 This study

Table 10 .
Accuracy rate of Himawari-8 CLTYPE and AInfraredCCM.

Table 10 .
Accuracy rate of Himawari-8 CLTYPE and AInfraredCCM.

Himawari-8 CLTYPE AInfraredCCM
Full area 0.48 0.86
cloudy area 0.36 0.87
clear sky 0.77 0.85

Table 11.
Cloud classification result of the AInfraredCCM for daytime and nighttime .

Table 11.
Cloud classification result of the AInfraredCCM for daytime and nighttime .

time Cloud Type clear ci Dc Ac As n Cu Sc St
accuracy = 85.82 %
daytime precision 0.85 0.90 0.92 0.82 0.89 0.95 0.68 0.89 0.98
Recall 0.89 0.88 0.86 0.72 0.88 0.93 0.54 0.92 0.90
f1 – score 0.87 0.89 0.89 0.77 0.88 0.94 0.60 0.91 0.94
Accuracy = 91.45%
nighttime precision 0.90 0.92 0.99 0.87 0.92 0.96 0.77 0.93 0.97
Recall 0.90 0.91 0.92 0.85 0.93 0.97 0.56 0.96 0.96
f1 – score 0.90 0.91 0.95 0.86 0.93 0.96 0.65 0.94 0.96

Table 12.
Results of the four seasonal classifications.

Table 12.
Results of the four seasonal classifications.

Season Cloud Type clear ci Dc Ac As n Cu Sc St
Accuracy = 86.61%
Spring precision 0.85 0.90 0.93 0.83 0.90 0.96 0.69 0.90 0.97
Recall 0.90 0.87 0.87 0.75 0.87 0.94 0.56 0.93 0.90
f1 – score 0.88 0.88 0.90 0.79 0.89 0.95 0.62 0.92 0.93
Accuracy = 85.60%
Summer precision 0.84 0.91 0.95 0.82 0.87 0.95 0.66 0.88 0.97
Recall 0.88 0.89 0.89 0.74 0.88 0.93 0.50 0.92 0.93
f1 – score 0.86 0.90 0.92 0.78 0.88 0.94 0.57 0.90 0.95
Accuracy = 85.87%
Autumn precision 0.85 0.90 0.93 0.81 0.88 0.95 0.68 0.88 0.99
Recall 0.89 0.87 0.90 0.74 0.88 0.93 0.54 0.93 0.90
f1 – score 0.87 0.89 0.91 0.77 0.88 0.94 0.60 0.90 0.94
Accuracy = 87.27%
winter precision 0.87 0.91 0.86 0.84 0.91 0.95 0.69 0.89 0.99
Recall 0.91 0.89 0.88 0.75 0.88 0.93 0.55 0.93 0.87
f1 – score 0.89 0.90 0.87 0.79 0.90 0.94 0.60 0.91 0.92