No results found
We couldn't find anything using that term, please try searching for something else.
Figure 1. Illustration of the observation area of the Himawari-8 satellite . Figure 1. Illustration of the observation a
Figure 1.
Illustration of the observation area of the Himawari-8 satellite .
Figure 1.
Illustration of the observation area of the Himawari-8 satellite .
figure 2 .
Cloud datum for 10 channel of AHI .
figure 2 .
Cloud datum for 10 channel of AHI .
Figure 3.
General flow diagram .
Figure 3.
General flow diagram.
figure 4 .
Confusion matrix of the AInfraredCCM.
figure 4 .
Confusion matrix of the AInfraredCCM.
figure 5 .
Classification performance graphs of different models. (a–e) graph of the precision , recall , and f1 – score of classification result of 5 model in different cloud type .
figure 5 .
Classification performance graphs of different models. (a–e) graph of the precision , recall , and f1 – score of classification result of 5 model in different cloud type .
Figure 6.
Classification result of different model at 05:00 UTC on June 29 , 2019 . (a) visible datum , (b) thermal infrared data, (c) the brightness temperature map ; (d–h) sequentially present the classification results of GradientBoost, LightGBM, rf, AdaBoost, and AInfraredCCM, respectively.
Figure 6.
Classification result of different model at 05:00 UTC on June 29 , 2019 . (a) visible datum , (b) thermal infrared data, (c) the brightness temperature map ; (d–h) sequentially present the classification results of GradientBoost, LightGBM, rf, AdaBoost, and AInfraredCCM, respectively.
figure 7 .
Evaluation of classification metrics of the AInfraredCCM for daytime/nighttime. (a,b) bar graph of precision , recall , and f1 – score of different type of cloud classification result ; (c,d) confusion matrix of different type of cloud classification in daytime and nighttime .
figure 7 .
Evaluation of classification metrics of the AInfraredCCM for daytime/nighttime. (a,b) bar graph of precision , recall , and f1 – score of different type of cloud classification result ; (c,d) confusion matrix of different types of cloud classification in daytime and nighttime.
Figure 8.
plot of classification result at 04:20 UTC on May 15 , 2019 . (a) rgb ; (b) bright temperature ; (c) ainfraredccm result ; (d,e) CLTYPE, AInfraredCCM results, and label; (f) the combine cloud product of the CPR / CALIOP and Himawari-8 datum ; (g) vertical profile of the cloud type along the orbit of the CPR / CALIOP .
Figure 8.
plot of classification result at 04:20 UTC on May 15 , 2019 . (a) rgb ; (b) bright temperature ; (c) ainfraredccm result ; (d,e) CLTYPE, AInfraredCCM results, and label; (f) the combine cloud product of the CPR / CALIOP and Himawari-8 datum ; (g) vertical profiles of the cloud types along the orbit of the CPR/CALIOP.
figure 9 .
evaluation metric of the model across 4 season ; (a–h) are the line graphs and confusion matrix of precision, recall, and f1 – score in 4 seasons.
figure 9 .
evaluation metric of the model across 4 season ; (a–h) are the line graphs and confusion matrix of precision, recall, and f1 – score in 4 seasons.
Figure 10.
Bright temperatures (K), AInfraredCCM classification results, and Himawari-8 CLTYPE for different seasons. (a–d) Cloud map moments in the following order: 15 May 2019 UTC 02:50; 5 August 2017 UTC 05:00; 10 October 2018 UTC 03:30; and 1 February 2019 UTC 06:40, respectively.
Figure 10.
Bright temperatures (K), AInfraredCCM classification results, and Himawari-8 CLTYPE for different seasons. (a–d) Cloud map moments in the following order: 15 May 2019 UTC 02:50; 5 August 2017 UTC 05:00; 10 October 2018 UTC 03:30; and 1 February 2019 UTC 06:40, respectively.
Table 1 .
Himawari-8 band parameter and application .
Table 1 .
Himawari-8 band parameter and application .
Bands | Channel Type | Center wavelength ( μm ) | Spatial Resolution (km) |
Main Applications |
---|---|---|---|---|
7 | Midwave IR | 3.9 | 2 | Natural disasters, low cloud (fog) observation |
8 | Water vapor | 6.2 | 2 | Observation of water vapor volume in the upper and middle layers |
9 | 6.9 | 2 | observation of water vaporization in the mesosphere | |
10 | 7.3 | 2 | ||
11 | Longwave IR | 8.6 | 2 | Cloud phase identification and SO2 detection |
12 | 9.6 | 2 | Measurement of total ozone | |
13 | 10.4 | 2 | Observation of cloud images and cloud top conditions | |
14 | 11.2 | 2 | Observation of cloud images and sea surface water temperature | |
15 | 12.4 | 2 | Observation of cloud images and sea surface water temperature | |
16 | 13.3 | 2 | Measurement of cloud height |
Table 2.
Cloud type of this study.
Table 2.
Cloud type of this study.
Cloud Label | Label of CPR/CALIOP | Label of CLTYPE | Name of Cloud |
---|---|---|---|
0 | 0 ( clear ) | 0 ( clear ) | clear |
1 | 1 ( ci ) | 1, 2 (ci, Cs) | ci (ci, Cs) |
2 | 8 ( Dc ) | 3 (Dc) | Dc |
3 | 3 ( Ac ) | 4 (Ac) | Ac |
4 | 2 ( As ) | 5 (As) | As |
5 | 7 (n) | 6 (n) | n |
6 | 6 ( Cu ) | 7 ( Cu ) | Cu |
7 | 5 (Sc) | 8 (Sc) | Sc |
8 | 4 (St) | 9 ( St ) | St |
Table 3.
Information of dataset.
Table 3.
Information of dataset.
Dimension | number | Variables |
---|---|---|
predictor | BTs (10) | BT (3.9 μm), BT (6.2 μm), BT (6.9 μm), BT (7.3 μm), BT (8.6 μm), BT (9.6 μm), BT (10.4 μm), BT (11.2 μm), BT (12.4 μm), and BT (13.3 μm) |
BTDs (5) | BTD (11.2–7.3 μm), BTD (3.9–11.2 μm), BTD (11.2–12.4 μm), BTD (12.4–10.4 μm), and BTD (7.3–10.4 μm) |
|
Auxiliary data (2) | Latitude and Longitude | |
Prediction | 1 | Cloud label from 2B-CLDCLASS-LIDAR and CLTYPE |
Table 4.
Classification results of the model on dataset C.
Table 4.
Classification results of the model on dataset C.
number of Ever category | Total number | |||
---|---|---|---|---|
number of category A clouds | number of category B clouds | |||
Model classification result | number of category A clouds | TA | FB | T1 |
number of category B clouds | fa | TB | T2 | |
Total number | AS | BS | T |
Table 5.
parameter of the AInfraredCCM .
Table 5.
parameter of the AInfraredCCM .
Parameter | Meaning | value |
---|---|---|
n_estimators | number of trees | 204 |
learning_rate | Magnitude of the iterative model update | 0.2122 |
max_depth | Maximum tree depth | 26 |
min_child_weight | Minimum number of samples required in a leaf node | 3 |
Table 6 .
precision, recall, and f1 – score of the AInfraredCCM.
Table 6 .
precision, recall, and f1 – score of the AInfraredCCM.
Cloud Type | precision | Recall | F1-Score |
---|---|---|---|
clear | 0.85 | 0.89 | 0.87 |
ci | 0.90 | 0.88 | 0.89 |
Dc | 0.93 | 0.87 | 0.90 |
Ac | 0.82 | 0.74 | 0.78 |
As | 0.89 | 0.88 | 0.89 |
n | 0.95 | 0.93 | 0.94 |
Cu | 0.68 | 0.57 | 0.60 |
Sc | 0.88 | 0.93 | 0.91 |
St | 0.98 | 0.90 | 0.94 |
Table 7.
Optimal parameter combinations for the model.
Table 7.
Optimal parameter combinations for the model.
Algorithm | Parameted Range |
---|---|
Random Forest | 1 . max_depth = 73 2. n_estimators = 280 |
LightGBM | 1. learning_rate = 0.095 2. max_depth = 22 3. n_estimators = 252 4. num_leaves = 35 |
AdaBoost | 1. learning_rate = 0.4224 2. max_depth = 74 3. n_estimators = 458 4. min_samples_leaf = 1 |
GradientBoost | 1 . learning_rate = 0.4749 2. max_depth = 37 3. n_estimators = 10 |
Table 8.
Evaluation for different model .
Table 8.
Evaluation for different model .
Algorithm | Accuracy | precision | Recall | F1-Score |
---|---|---|---|---|
Random Forest | 82.53 % | 0.83 | 0.76 | 0.79 |
LightGBM | 74.60 % | 0.70 | 0.64 | 0.66 |
GradientBoost | 80.96% | 0.78 | 0.77 | 0.78 |
AdaBoost | 85.83% | 0.87 | 0.83 | 0.85 |
AInfraredCCM | 86.22% | 0.88 | 0.84 | 0.86 |
Table 9 .
Cloud classification model statistical table.
Table 9 .
Cloud classification model statistical table.
Model | category | feature | time | OA | sample | Reference |
---|---|---|---|---|---|---|
rf | Dc, n, Cu, Sc, St, Ac, As, ci, and multi | REF is cloud and BT of 13 channel , cloud top height , cloud optical thickness is cloud , cloud effective radius |
day | 0.67 | 272414 | Yu et al. (2021) [12] |
BP | clear, low cloud, middle cloud, thick cirrus clouds, thin cirrus cloud, deep convective | IR1 (10.3–11.3), IR2 (11.5–12.5), WV (6.3–7.6), IR1-IR2, IR1-WV, IR2-WV | day | 0.86 | 2449 | Zhang et al . ( 2012 ) [ 39 ] |
CNN | clear, ci, Ac, As, Sc, Dc, n, Cu | All channel of FY-4A | day | 0.95 | 15780 | Wang et al. (2023) [40] |
rf | clear, low cloud, middle cloud, thin cloud, thick cloud, multilayer cloud, cumulonimbus | r ( 0.64 ) , r ( 1.6 ) , BT ( 11.2 μm ) , BTD ( 11.2–3.9 μm ) , BTD ( 11.2–7.3 μm ) , BTD ( 11.2–8.6 μm ) , BTD ( 11.2–12.3 μm ) | day | 0.88 | 127192 | Wang et al . ( 2023 ) [ 41 ] |
rf | clear, low cloud, middle cloud, thin cloud, thick cloud, multilayer cloud, cumulonimbus | BT (11.2 μm), BTD (11.2–3.9 μm), BTD (11.2–7.3 μm), BTD (11.2–8.6 μm), BTD (11.2–12.3 μm) | Night | 0.79 | 72934 | Wang et al . ( 2023 ) [ 41 ] |
rf | clear , single , multi | BT (3.9 um), BT (7.3 m), BT (8.6 μm), BT (11.2 μm), BT (12.4 μm), BTD ( 3.9–11.2 μm ) , BTD ( 8.6–11.2 μm ) , BTD ( 11.2–12.4 μm ) , latitude , longitude |
day and night | 0.79 | 12553889 | Tan et al. (2022) [16] |
DNN | clear, single-ice, single-mixed, single-water, multi | BT ( 3.9–13.3 μm ) , cosine of satellite zenith angle , simulate clear – sky radiance | day and night | 0.81 | 1114591 | Li et al . ( 2022 ) [ 17 ] |
AInfraredCCM | clear, ci, Dc, Ac, As, n, Cu, Sc, St | BT ( 3.9–13.3 μm ) , BTD ( 11.2–9.6 μm ) , BTD (3.9–11.2 μm), BTD (11.2–12.4 μm), BTD (12.4–10.4 μm), BTD (7.3–10.4 μm), latitude, longitude |
day and night | 0.86 | 1314275 | This study |
Table 10 .
Accuracy rate of Himawari-8 CLTYPE and AInfraredCCM.
Table 10 .
Accuracy rate of Himawari-8 CLTYPE and AInfraredCCM.
Himawari-8 CLTYPE | AInfraredCCM | |
---|---|---|
Full area | 0.48 | 0.86 |
cloudy area | 0.36 | 0.87 |
clear sky | 0.77 | 0.85 |
Table 11.
Cloud classification result of the AInfraredCCM for daytime and nighttime .
Table 11.
Cloud classification result of the AInfraredCCM for daytime and nighttime .
time | Cloud Type | clear | ci | Dc | Ac | As | n | Cu | Sc | St |
---|---|---|---|---|---|---|---|---|---|---|
accuracy = 85.82 % | ||||||||||
daytime | precision | 0.85 | 0.90 | 0.92 | 0.82 | 0.89 | 0.95 | 0.68 | 0.89 | 0.98 |
Recall | 0.89 | 0.88 | 0.86 | 0.72 | 0.88 | 0.93 | 0.54 | 0.92 | 0.90 | |
f1 – score | 0.87 | 0.89 | 0.89 | 0.77 | 0.88 | 0.94 | 0.60 | 0.91 | 0.94 | |
Accuracy = 91.45% | ||||||||||
nighttime | precision | 0.90 | 0.92 | 0.99 | 0.87 | 0.92 | 0.96 | 0.77 | 0.93 | 0.97 |
Recall | 0.90 | 0.91 | 0.92 | 0.85 | 0.93 | 0.97 | 0.56 | 0.96 | 0.96 | |
f1 – score | 0.90 | 0.91 | 0.95 | 0.86 | 0.93 | 0.96 | 0.65 | 0.94 | 0.96 |
Table 12.
Results of the four seasonal classifications.
Table 12.
Results of the four seasonal classifications.
Season | Cloud Type | clear | ci | Dc | Ac | As | n | Cu | Sc | St |
---|---|---|---|---|---|---|---|---|---|---|
Accuracy = 86.61% | ||||||||||
Spring | precision | 0.85 | 0.90 | 0.93 | 0.83 | 0.90 | 0.96 | 0.69 | 0.90 | 0.97 |
Recall | 0.90 | 0.87 | 0.87 | 0.75 | 0.87 | 0.94 | 0.56 | 0.93 | 0.90 | |
f1 – score | 0.88 | 0.88 | 0.90 | 0.79 | 0.89 | 0.95 | 0.62 | 0.92 | 0.93 | |
Accuracy = 85.60% | ||||||||||
Summer | precision | 0.84 | 0.91 | 0.95 | 0.82 | 0.87 | 0.95 | 0.66 | 0.88 | 0.97 |
Recall | 0.88 | 0.89 | 0.89 | 0.74 | 0.88 | 0.93 | 0.50 | 0.92 | 0.93 | |
f1 – score | 0.86 | 0.90 | 0.92 | 0.78 | 0.88 | 0.94 | 0.57 | 0.90 | 0.95 | |
Accuracy = 85.87% | ||||||||||
Autumn | precision | 0.85 | 0.90 | 0.93 | 0.81 | 0.88 | 0.95 | 0.68 | 0.88 | 0.99 |
Recall | 0.89 | 0.87 | 0.90 | 0.74 | 0.88 | 0.93 | 0.54 | 0.93 | 0.90 | |
f1 – score | 0.87 | 0.89 | 0.91 | 0.77 | 0.88 | 0.94 | 0.60 | 0.90 | 0.94 | |
Accuracy = 87.27% | ||||||||||
winter | precision | 0.87 | 0.91 | 0.86 | 0.84 | 0.91 | 0.95 | 0.69 | 0.89 | 0.99 |
Recall | 0.91 | 0.89 | 0.88 | 0.75 | 0.88 | 0.93 | 0.55 | 0.93 | 0.87 | |
f1 – score | 0.89 | 0.90 | 0.87 | 0.79 | 0.90 | 0.94 | 0.60 | 0.91 | 0.92 |