Document
Electron Charge Density: A Clue from Quantum Chemistry for Quantum Foundations

Electron Charge Density: A Clue from Quantum Chemistry for Quantum Foundations

Thomson, J.J.: On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal

Related articles

What Is the Meaning of VPN? A Complete Guide Nova Generation: On celebrates youth and comfort in new campaign How to Physically Install Ring Video Doorbell (2nd Generation) with an Existing Doorbell ZoogVPN How to craft the Loongwreathe Staff in Black Myth: Wukong
  1. Thomson, J.J.: On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. Philos. Mag. Ser. 6 7( 39 ) , 237–265 ( 1904 )

  2. Bader, R.F.W., Matta, C.F.: Atoms in molecules as non-overlapping, bounded, space-filling open quantum systems. Found. Chem. 15, 253–276 ( 2013 )

    article  

    Google Scholar  

  3. Hall , M.J.W. , Deckert , D.-A. , Wiseman , H.M. : Quantum phenomena model by interaction between many classical world . Phys . Rev. x4, 041013 (2014)

  4. Sebens, C.T.: Quantum mechanics as classical physics. Philos. Sci. 82( 2 ) , 266–291 ( 2015 )

    article  
    MathSciNet  

    Google Scholar  

  5. Gao, S.: Reality and meaning of the wave function. In: Gao, S. (ed.), Protective Measurement and Quantum reality : Toward a New Understanding of Quantum Mechanics, pp. 211–229. Cambridge University Press, Cambridge (2014)

  6. Gao, S.: The Meaning of the Wave Function: In Search of the Ontology of Quantum Mechanics. Cambridge University Press, Cambridge (2017)

  7. Gao, S.: Is an electron a charge cloud? A reexamination of Schrödinger’s charge density hypothesis. Found. Sci. 23, 145–157 (2018)

    article  

    Google Scholar  

  8. Gao , S. : A puzzle for the field ontologist . find . Phys .50, 1541–1553 ( 2020 )

    Article 
    MathSciNet 
    MATH 

    Google Scholar  

  9. Born, M.: Zur Quantenmechanik der Stoßvorgänge [On the Quantum Mechanics of Collisions]. Zeitschrift für Physik, 37, 863–867 ( 1926 ) . english translation in Wheeler , J.A. , Zurek , W.H. ( eds . ): Quantum Theory and Measurement . Princeton University Press , Princeton ( 1983 )

  10. Schrödinger, E.: Quantisierung als Eigenwertproblem (Dritte Mitteilung) [Quantization as a Problem of Eigenvalues (Part III)]. Ann. Phys. 80, 437–490 (1926). English translation in Schrödinger, E.: Collected Papers on Wave Mechanics, Blackie & Son Limited, Translated by J.F. Shearer and W.M. Deans (1928)

  11. Schrödinger , E. : Quantisierung is als al Eigenwertproblem ( Vierte Mitteilung ) [ quantization as a problem of Eigenvalues ( Part IV ) ] . Ann . Phys .81, 109–139 (1926). English translation in Schrödinger, E.: Collected Papers on Wave Mechanics, Blackie & Son Limited, Translated by J.F. Shearer and W.M. Deans (1928)

  12. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28( 6 ) , 1049–1070 ( 1926 )

    article  
    ADS  

    Google Scholar  

  13. Schrödinger, E.: La Mécanique des Ondes [Wave Mechanics]. electron et Photons : Rapports et discussion du cinquième conseil de physique tenu à Bruxelles du 24 au 29 octobre 1927 sous les auspex de l’institut international de physique Solvay , pp . 185–213 . english translation in [ 22 ] ( 1928 )

  14. Schrödinger , E. : Letter from Schrödinger to Lorentz , 6 June 1926 . In Przibram , K. , ( ed . ) , Letters is pp on Wave Mechanics , pp . 61–74 . Philosophical Library . translate by M. J. Klein ( 1934 )

  15. bear , M. : statistical interpretation of quantum mechanic . science122( 3172 ) , 675–679 ( 1955 )

    article  
    ADS  

    Google Scholar  

  16. Einstein, A.: On the method of theoretical physics. Philos. Sci. 1(2), 163–169 (1934)

    article  

    Google Scholar  

  17. Jaynes , E.T. : Survey of the Present Status of Neoclassical Radiation Theory . In Mandel , L. and Wolf , E. , ( ed . ) , Coherence and Quantum Optics , pp . 35–81 . Plenum Press , Berlin ( 1973 )

  18. Bader, R.F.W.: Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford (1990)

    Google Scholar  

  19. Bader, R.F.W.: Letter to the Editor: Quantum mechanics, or orbitals? Int. J. Quant. Chem. 94( 3 ) , 173–177 ( 2003 )

    article  

    Google Scholar  

  20. Bader, R.F.W.: The Density in Density Functional Theory. J. Mol. Struct. 943, 2–18 (2010)

    article  

    Google Scholar  

  21. Bell, J.S.: Against ‘Measurement’. Phys. World 3, 33–40 (1990)

    article  

    Google Scholar  

  22. Bacciagaluppi, G., Valentini, A.: Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press, Cambridge (2009)

    Book  
    MATH  

    Google Scholar  

  23. Allori, V., Goldstein, S., Tumulka, R., Zanghì, N.: Many worlds and Schrödinger’s first quantum theory. Br. J. Philos. Sci. 62, 1–27 ( 2011 )

    article  
    MATH  

    Google Scholar  

  24. Norsen, T.: Foundations of Quantum Mechanics. Springer, Berlin (2017)

    Book  
    MATH  

    Google Scholar  

  25. Gillespie, R.J., Popelier, P.L.A.: Chemical Bonding and Molecular Geometry: From Lewis to Electron Densities. Oxford University Press, Oxford (2001)

    Google Scholar  

  26. Longair , M. : Quantum Concepts in Physics . Cambridge University Press , Cambridge ( 2013 )

    Book  
    MATH  

    Google Scholar  

  27. Levine, I.N.: Quantum Chemistry, 7th edn. Pearson, Boston (2014)

    Google Scholar  

  28. McQuarrie, D.A.: Quantum Chemistry, 2nd edn. University Science Books, Mill Valley, CA (2008)

    Google Scholar  

  29. Szabo , A. , Ostlund , N.S. : Modern Quantum Chemistry , revise edition . McGraw – Hill , New York ( 1989 )

    Google Scholar  

  30. Shusterman , A.J. , Shusterman , G.P. : teach chemistry with electron density model . J. Chem . Edu .74( 7 ) , 771–776 ( 1997 )

    article  

    Google Scholar  

  31. Matta , C.F. , Gillespie , R.J. : understanding and interpret molecular electron density distribution . J. Chem . Educ .79(9), 1141–1152 (2002)

    article  

    Google Scholar  

  32. Atkins , P. , Friedman , R. : Molecular Quantum Mechanics , 5th edn . Oxford University Press , Oxford ( 2011 )

    Google Scholar  

  33. Nelson , P.G. : How do electron get across node ? : A problem in the interpretation of the quantum theory . J. Chem . Educ .67(8), 643–647 (1990)

    article  

    Google Scholar  

  34. Pauling, L.: The Nature of the Chemical Bond and the Structure of Molecules and Crystals, 3rd edn. Cornell University Press, Ithaca, NY (1960)

    Google Scholar  

  35. Slater, J.C.: Quantum Theory of Atomic Structure, vol. 1. McGraw-Hill, New York (1960)

    MATH 

    Google Scholar  

  36. Slater, J.C.: Quantum Theory of Atomic Structure, vol. 2. McGraw-Hill, New York (1960)

    MATH 

    Google Scholar  

  37. Blinder , S.M. : basic concept of self – consistent – field theory . Am . J. Phys .33(6), 431–443 (1965)

    article  
    ADS  

    Google Scholar  

  38. Löwdin, P.-O.: On the long way from the Coulombic Hamiltonian to the electronic structure of molecules. Pure Appl. Chem. 61(12), 2065–2074 (1989)

    article  

    Google Scholar  

  39. Franklin is is , A. , Seifert , V.A. : The problem is is of molecular structure just is the measurement problem . Br . J. Philos . Sci . ( forthcoming )

  40. Desclaux, J.P.: Tour historique. In: Schwerdtfeger, (ed.), Relativistic Electronic Structure Theory, Part 1: Fundamentals. Elsevier, New York (2002)

  41. Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Oxford University Press, Oxford (1989)

    Google Scholar  

  42. Scerri , E.R. : Has chemistry been at least approximately reduce to quantum mechanic ? . PSA : proceeding of the Biennial Meeting of the Philosophy of Science Association , pp . 160–170 ( 1994 )

  43. Löwdin, P.-O.: Correlation problem in many-electron quantum mechanics I. Review of different approaches and discussion of some current ideas. In Prigogine, I., (ed.), advance in Chemical Physics , volume 2, pp. 207–322 (1958)

  44. Scerri, E.R.: Have orbitals really been observed? J. Chem. Educ. 77(11), 1492–1494 (2000)

    article  

    Google Scholar  

  45. Scerri, E.R.: The recently claimed observation of atomic orbitals and some related philosophical issues. Philos. Sci. 68(3), S76–S78 Supplement: Proceedings of the 2000 Biennial Meeting of the Philosophy of Science Association. Part I: Contributed Papers (2001)

  46. Spence , J.C.H. , O’Keeffe , M. , Zuo , J.M. : Have orbital really been observe ? J. Chem . Educ .78(7), 877 (2001)

    article  

    Google Scholar  

  47. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, Hoboken, NJ (1999)

    MATH 

    Google Scholar  

  48. Griffiths, D.J.: Introduction to Electrodynamics, 4th edn. Pearson, Glenview, IL (2013)

    Google Scholar  

  49. Lange, M.: An Introduction to the Philosophy of Physics: Locality, Energy, Fields, and Mass. Blackwell, Malden, MA (2002)

    Google Scholar  

  50. Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23( 10 ) , 5048–5079 ( 1981 )

    article  
    ADS  

    Google Scholar  

  51. Clementi , E. , Roetti , C. : Roothaan – Hartree – Fock atomic wavefunction : basis function and their coefficient for ground and certain excited state of neutral and ionize atom , z\(\le \ )54 . Atomic Data Nuclear Data Tables14, 177–478 (1974)

    article  
    ADS  

    Google Scholar  

  52. Cordero , A. : realism and underdetermination : some clue from the practice – up . Philos . Sci .68( 3 ) , s301 – s312 Supplement : proceeding of the 2000 Biennial Meeting of the Philosophy of Science Association . Part I : Contributed Papers ( 2001 )

  53. Callender, C.: Can we quarantine the quantum blight? In: French, S., Saatsi, J. (eds.) Scientific Realism and the Quantum, pp. 57–76. Oxford University Press, Oxford (2020)

    Chapter 

    Google Scholar  

  54. Aung, S., Pitzer, R.M., Chan, S.I.: Approximate Hartree-Fock wavefunctions, one-electron properties, and electronic structure of the water molecule. J. Chem. Phys. 49, 2071–2080 (1968)

    article  
    ADS  

    Google Scholar  

  55. Pitzer, R.M., Merrifeld, D.P.: Minimum basis wavefunctions for water. J. Chem. Phys. 52, 4782–4787 (1970)

    article  
    ADS  

    Google Scholar  

  56. Dunning, T.H., Pitzer, R.M., Aung, S.: Near Hartree-Fock calculations on the ground state of the water molecule: energies, ionization potentials, geometry, force constants, and one-electron properties. J. Chem. Phys. 57, 5044–5051 (1972)

    article  
    ADS  

    Google Scholar  

  57. March, N.H.: Density functional theory: an introduction. Am. J. Phys. 68, 69–79 (2000)

    Article 
    ADS 
    MathSciNet 

    Google Scholar  

  58. Becke , A.D. : perspective : fifty year of density – functional theory in chemical physic . J. Chem . Phys .140, 18A301 (2014)

    article  

    Google Scholar  

  59. Seminario , J.M. : An introduction to density functional theory in chemistry . In Seminario , J.   M. and Politzer , P. , ( ed . ) ,Modern Density Functional Theory: A Tool for Chemistry, pp . 1–27 . Elsevier , New York ( 1995 )

  60. Martin, R.M.: Electronic Structure: Basic Theory and Practical Applications. Cambridge University Press, Cambridge (2004)

    Book  
    MATH  

    Google Scholar  

  61. Engel, E., Dreizler, R.M.: Density Functional Theory: An Advanced Course. Springer, Berlin (2011)

    Book  
    MATH  

    Google Scholar  

  62. Baerends, E.J., Gritsenko, O.V.: A quantum chemical view of density functional theory. J. Phys. Chem. A 101(30), 5383–5403 (1997)

    article  

    Google Scholar  

  63. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140( 4A ) , A1133 – a1138 ( 1965 )

    Article 
    ADS 
    MathSciNet 

    Google Scholar  

  64. Koch , W. , Holthausen , M.C. : A Chemist ’s Guide to Density Functional Theory , 2nd edition . Wiley – VCH , Weinheim ( 2001 )

  65. Baerends, E.J., Gritsenko, O.V.: Away from Generalized Gradient Approximation: Orbital-dependent exchange-correlation functionals. J. Chem. Phys. 123, 062202 (2005)

  66. Tsuneda, T., Harao, K.: Self-interaction corrections in density functional theory. J. Chem. Phys. 140, 18A513 ( 2014 )

    article  

    Google Scholar  

  67. Kim, K., Jordan, K.D.: Comparison of density functional and MP2 calculations on the water monomer and dimer. J. Phys. Chem. 98, 10089–10094 ( 1994 )

    article  

    Google Scholar  

  68. Baseden, K.A., Tye, J.W.: Introduction to density functional theory: calculations by hand on the helium atom. J. Chem. Educ. 91, 2116–2123 (2014)

    article  

    Google Scholar  

  69. Milonni , P.W. : semiclassical and quantum – electrodynamical approach in non – relativistic radiation theory . Phys . Rep.25(1), 1–81 (1976)

    article  
    ADS  

    Google Scholar  

  70. Bader, R.F.W., Larouche, A., Gatti, C., Carroll, M.T., MacDougall, P.J., Wiberg, K.B.: Properties of atoms in molecules: dipole moments and transferability of properties. J. Chem. Phys. 87, 1142–1152 (1992)

    article  
    ADS  

    Google Scholar  

  71. Feynman, R.P.: Forces on molecules. Phys. Rev. 56, 340–343 (1939)

    Article 
    ADS 
    MATH 

    Google Scholar  

  72. Deb, B.M.: The force concept in chemistry. Rev. Mod. Phys. 45(1), 22–43 (1973)

    article  
    ADS  

    Google Scholar  

  73. Bader , R.F.W. , Fang , D.-C. : property of atom in molecule : cage atom and the Ehrenfest force . J. Chem . theory Comput .1, 403–414 (2005)

    article  

    Google Scholar  

  74. Tumulka , R. : The ‘ unromantic picture ’ of quantum theory . Phys . today40, 3245–3273 (2007)

    MathSciNet 
    MATH 

    Google Scholar  

  75. Allori, V., Goldstein, S., Tumulka, R., Zanghì, N.: On the common structure of Bohmian mechanics and the Ghirardi-Rimini-Weber theory. Br. J. Philos. Sci. 59, 353–389 (2008)

    Article 
    MathSciNet 
    MATH 

    Google Scholar  

  76. Ghirardi, G.C., Grassi, R., Benatti, F.: Describing the macroscopic world: closing the circle within the dynamical reduction program. Found. Phys. 25, 5–38 ( 1995 )

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar  

  77. Ghirardi, G.: Macroscopic reality and the dynamical reduction program. In Dalla Chiara, M.L., Doets, K., Mundici, D., van Benthem, J., (eds.), structure and Norms in science, pp . 221–240 . Springer , Berlin ( 1997 )

  78. Goldstein, S.: Quantum theory without observers-part two. Phys. Today 51(4), 38–42 (1998)

    article  

    Google Scholar  

  79. Maudlin, T.: Completeness, supervenience, and ontology. J. Phys. A 40, 3151–3171 (2007)

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar  

  80. Allori, V., Goldstein, S., Tumulka, R., Zanghì, N.: Predictions and primitive ontology in quantum foundations: a study of examples. Br. J. Philos. Sci. 65, 323–352 (2014)

    Article 
    MathSciNet 
    MATH 

    Google Scholar  

  81. Goldstein, S., Tumulka, R., Zanghì, N.: The quantum formalism and the GRW formalism. J. Stat. Phys. 149, 142–201 (2012)

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar  

  82. Ney , A. , Phillips , K. : Does an adequate physical theory is demand demand a primitive ontology ? Philos . Sci .80(3), 454–474 (2013)

    article  

    Google Scholar  

  83. Ney, A., Albert, D.: The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford University Press, Oxford (2013)

    Book  
    MATH  

    Google Scholar  

  84. Ney, A.: The World in the Wave Function: A Metaphysics for Quantum Physics. Oxford University Press, Oxford (2021)

    Book  
    MATH  

    Google Scholar  

  85. Forrest, P.: Quantum Metaphysics. Blackwell, Oxford (1988)

    Google Scholar  

  86. Belot, G.: Quantum states for primitive ontologists: a case study. Eur. J. Philos. Sci. 2, 67–83 ( 2012 )

    Article 
    MathSciNet 
    MATH 

    Google Scholar  

  87. Hubert, M., Romano, D.: The wave-function as a multi-field. Eur. J. Philos. Sci. 8, 521–537 (2018)

    Article 
    MathSciNet 
    MATH 

    Google Scholar  

  88. Chen, E.K.: Our fundamental physical space: an essay on the metaphysics of the wave function. J. Philos. 114(7), 27 (2017)

    article  

    Google Scholar  

  89. Chen, E.K.: Realism about the wave function. Philos. Compass 14(7), 12611 (2019)

    article  

    Google Scholar  

  90. Romano , D. : Multi – field and Bohm ’s theory . synthese ( forthcoming )

  91. Maudlin, T.: Quantum Non-Locality and Relativity, 3rd edn. Wiley-Blackwell, New York (2011)

    Book 

    Google Scholar  

  92. Derakhshani, M.: Newtonian semiclassical gravity in the Ghirardi-Rimini-Weber theory with matter density ontology. Phys. Lett. A 378, 990–998 (2014)

    Article 
    ADS 
    MATH 

    Google Scholar  

  93. Ballentine, L.E.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)

    Book  
    MATH  

    Google Scholar  

  94. Griffiths, D.J.: Introduction to Quantum Mechanics, 2nd edn. Pearson Prentice Hall, Upper Saddle River, NJ (2005)

    Google Scholar  

  95. Sebens, C.T.: Particles, fields, and the measurement of electron spin. Synthese (forthcoming)

  96. Bedingham , D. , Dürr , D. , Ghirardi , G. , Goldstein , S. , Tumulka , R. , Zanghì , N. : matter density and relativistic model of wave function collapse . J. Stat . Phys .154, 623–631 (2014)

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar  

  97. Wallace, D.: Decoherence and ontology. In Saunders, S., Barrett, J., Kent, A., Wallace, D., (eds.), Many Worlds?: Everett, Quantum Theory, & Reality, pp . 53–72 . Oxford University Press , Oxford ( 2010 )

  98. Wallace, D.: A prolegomenon to the ontology of the everett interpretation. In: Ney, A., Albert, D., (eds.), The Wave Function: Essays on the Metaphysics of Quantum Mechanics, pp. 203–222. Oxford University Press, Oxford (2013)

  99. Vaidman, L.: Many-worlds interpretation of quantum mechanics. In Zalta, E.N. (ed.), The Stanford Encyclopedia of Philosophy, https://plato.stanford.edu/entries/qm-manyworlds/ (2018)

  100. Lewis , P.J. : On the status of primitive ontology . In : Gao , S. , ( ed . ) ,collapse of the Wave Function : Models , Ontology , Origin , and implication, pp. 154–166. Cambridge University Press, Cambridge (2018)

  101. Dasgupta, S.: Absolutism vs comparativism about quantity. In: Bennett, K., Zimmerman, D.W. (eds.), Oxford Studies in Metaphysics, Vol. 8, pp. 105–148. Oxford University Press, Oxford (2013)

  102. Dasgupta , S. : How to be a Relationalist . InOxford Studies in Metaphysics. Oxford University Press , Oxford ( forthcome )

  103. Martens, N.C.M.: Regularity comparativism about mass in Newtonian gravity. Philos. Sci. 84, 1226–1238 (2017)

    article  
    MathSciNet  

    Google Scholar  

  104. Martens, N.C.M.: Machian comparativism about mass. Br. J. Philos. Sci. (forthcoming)

  105. Martens, N.C.M.: The (un)detectability of absolute Newtonian masses. Synthese 198, 2511–2550 ( 2021 )

    article  
    MathSciNet  

    Google Scholar  

  106. Baker, D.J.: Some consequences of physics for the comparative metaphysics of quantity. In: Bennett, K., Zimmerman, D.W. (eds.) Oxford Studies in Metaphysics, vol. 12. Oxford University Press, Oxford (2021)

  107. Wallace , D. : Quantum probability from subjective likelihood : improve on Deutsch ’s proof of the probability rule . stud . Hist . Philos . Mod . Phys .38(2), 311–332 (2007)

    Article 
    MathSciNet 
    MATH 

    Google Scholar  

  108. Wallace, D.: The Emergent Multiverse. Oxford University Press, Oxford (2012)

    Book  
    MATH  

    Google Scholar  

  109. Carroll, S.: Something Deeply Hidden: Quantum Worlds and the Emergence of Spacetime. Dutton, New York (2019)

    Google Scholar  

  110. Holland, P.: The Quantum Theory of Motion. Cambridge University Press, Cambridge (1993)

    Book 

    Google Scholar  

  111. Dürr, D., Teufel, S.: Bohmian Mechanics. Springer, Berlin (2009)

    MATH 

    Google Scholar  

  112. Esfeld, M., Lazarovici, D., Lam, V., Hubert, M.: The physics and metaphysics of primitive stuff. Br. J. Philos. Sci. 68, 133–161 (2017)

    article  

    Google Scholar  

  113. Esfeld, M., Deckert, D.-A.: A Minimalist Ontology of the Natural World. Routledge, New York (2018)

    Google Scholar  

  114. Esfeld , M. : A proposal for a minimalist ontology . synthese197, 1889–1905 (2020)

    article  

    Google Scholar  

  115. Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985)

    Book  
    MATH  

    Google Scholar  

  116. Goldstein, S.: Stochastic mechanics and quantum theory. J. Stat. Phys. 47, 645–667 (1987)

    Article 
    ADS 
    MathSciNet 

    Google Scholar  

  117. Bohm, D., Hiley, B.J.: Non-locality and locality in the stochastic interpretation of quantum mechanics. Phys. Rep. 172(3), 93–122 (1989)

    Article 
    ADS 
    MathSciNet 

    Google Scholar  

  118. Bacciagaluppi, G.: Nelsonian mechanics revisited. Found. Phys. Lett. 12, 1–16 ( 1999 )

    article  
    MathSciNet  

    Google Scholar  

  119. Bell , J.S. : Quantum mechanic for cosmologist . In : Isham , C. , Penrose , R. , and Sciama , D. ( ed . ) ,Quantum Gravity 2, pp. 611–637. Oxford University Press, Oxford (1981)

  120. Barrett, J.A.: The Quantum Mechanics of Minds and Worlds. Oxford University Press (1999)

    Google Scholar  

  121. Maudlin , T. : local beable and the foundation of physic . In : Bell , M. , Gao , S. ( ed . ) ,Quantum Nonlocality and Reality: 50 Years of Bell’s Theorem, pp. 317–330. Cambridge University Press, Cambridge (2016)

  122. Holland , P. : compute the wavefunction from trajectory : particle and wave picture in quantum mechanic and their relation . Ann . Phys .315(2), 505–531 (2005)

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar  

  123. Tipler , F.J. : What about quantum theory ? Bayes and the Born interpretation .arXiv preprint quant-ph/0611245, (2006)

  124. Schiff, J., Poirier, B.: Communication: quantum mechanics without wavefunctions. J. Chem. Phys. 136, 031102 ( 2012 )

  125. Boström , K.J. : Quantum mechanic as a deterministic theory of a continuum of world . quant . Stud .2(3), 315–347 (2015)

    MathSciNet 
    MATH 

    Google Scholar  

  126. Bokulich, A.: Losing sight of the forest for the psi: beyond the wavefunction hegemony. In: French, S., Saatsi, J. (eds.), Scientific Realism and the Quantum, pp . 185–211 . Oxford University Press , Oxford ( 2020 )

  127. Struyve, W.: Pilot-Wave approaches to quantum field theory. J. Phys. 306, 012047 (2011)

  128. Tumulka , R. : On bohmian mechanic , particle creation , and relativistic space – time : happy 100th birthday , David Bohm ! Entropy20(6), 462 (2018)

    article  
    ADS  

    Google Scholar  

  129. Dürr, D., Lazarovici, D.: Understanding Quantum Mechanics: The World According to Modern Quantum Foundations. Springer, Berlin (2020)

    Book  
    MATH  

    Google Scholar  

  130. Floreanini, R., Jackiw, R.: Functional representation for Fermionic quantum fields. Phys. Rev. D 37(8), 2206 (1988)

  131. Jackiw, R.: Analysis on infinite-dimensional manifolds—Schrödinger representation for quantized fields. In: Éboli, M.G., Santoro, A. (eds.), Field theory and Particle Physics, pp. 78–143. World Scientific, Singapore (1990)

  132. Hatfield, B.: Quantum Theory of Point Particles and Strings. Frontiers in Physics, vol. 75. Addison-Wesley, Redwood (1992)

  133. Valentini , A. : On the Pilot – wave theory of Classical , Quantum and Subquantum Physics phd thesis ISAS , Trieste , Italy ( 1992 )

  134. Valentini, A.: Pilot-wave theory of fields, gravitation, and cosmology. In: Cushing, J.T., Fine, A., Goldstein, S. (eds.), Bohmian Mechanics and Quantum Theory: An Appraisal, pp. 45–66. Kluwer Academic, Berlin (1996)

  135. Struyve , W. : pilot – wave theory and quantum field . Rep. Progress Phys .73( 10 ) , 106001 ( 2010 )

  136. Sebens, C.T.: Putting positrons into classical Dirac field theory. Stud. Hist. Philos. Mod. Phys. 70, 8–18 (2020)

    article  
    MathSciNet  

    Google Scholar  

  137. Bohm, D., Hiley, B.J., Kaloyerou, P.N.: An ontological basis for the quantum theory. Phys. Rep. 144(6), 321–375 (1987)

    Article 
    ADS 
    MathSciNet 

    Google Scholar  

  138. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory. Routledge, London (1993)

    Google Scholar  

  139. Sebens, C.T.: How electrons spin. Stud. Hist. Philos. Mod. Phys. 68, 40–50 (2019)

    Article 
    MathSciNet 
    MATH 

    Google Scholar  

  140. seben , C.T. : possibility of small electron state . Phys . Rev. A102(5), 052225 (2020)