No results found
We couldn't find anything using that term, please try searching for something else.
Alhomdy, S., Thabit, F., Abdulrazzak, F. A. H., Haldorai, A., & Jagtap, S. (2021). The role of cloud computing technology: A savior to fight the l
Alhomdy, S., Thabit, F., Abdulrazzak, F. A. H., Haldorai, A., & Jagtap, S. (2021). The role of cloud computing technology: A savior to fight the lockdown in COVID 19 crisis, the benefits, characteristics and applications. International Journal of Intelligent Networks , 2, 166–174. https://doi.org/10.1016/j.ijin.2021.08.001
Article
Google Scholar
Ali, O., Shrestha, A., Osmanaj, V., & Muhammed, S. (2020). Cloud computing technology adoption: An evaluation of key factors in local governments. Information Technology & People, 34(2), 666–703. https://doi.org/10.1108/ITP-03-2019-0119
Article
Google Scholar
Ali, R. O., & Abubaker, S. R. (2019). Trend analysis using Mann–Kendall, Sen’s slope estimator test and innovative trend analysis method in Yangtze River basin, China. International Journal of Engineering & Technology, 8( 2 ) , 110–119 .
Google Scholar
Al-Ruithe, M., Benkhelifa, E., & Hameed, K. (2018). Key issues for embracing the cloud computing to adopt a digital transformation: A study of Saudi public sector. Procedia Computer Science, 130, 1037–1043.
Article
Google Scholar
Ayaz, A., Celik, K., & Ozyurt, O. (2021). Pattern detection in cloud computing: Bibliometric mapping of publications in the field from past to present. COLLNET Journal of scientometric and Information Management , 15(2), 469–494.
Article
Google Scholar
Baumann, M. (2015). Historic and potential technology transition paths of grid battery storage: Co-evolution of energy grid, electric mobility and batteries ( No . 02/2015 ) . Universidade Nova de Lisboa , IET / CICS . NOVA – Interdisciplinary Centre on Social Sciences , Faculty of Science and Technology .
bird , a. ( 2022 ) . Thomas Kuhn . In E.N. Zalta ( Ed . ) ,The Stanford encyclopedia of philosophy (Spring 2022 Edition). https://plato.stanford.edu/archives/spr2022/entries/thomas-kuhn/.
Blei, D. M., Lafferty, J. D. (2006). Dynamic topic models. In Proceedings of the 23rd international conference on machine learning ( pp . 113–120 ) . https://doi.org/10.1145/1143844.1143859
Blei, D. M. (2012). Probabilistic topic models. communication of the ACM , 55(4), 77–84. https://doi.org/10.1145/2133806.2133826
Article
Google Scholar
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. The Journal of Machine Learning Research, 3, 993–1022.
Google Scholar
Brem Petra A. , Nylund Saeed , Roshani . ( 2023 ) . unpack the complexity of crisis innovation : a comprehensive review of ecosystem – level response to exogenous shock .Abstract Review of Managerial Science 18( 8) , 2441–2464 . https://doi.org/10.1007/s11846-023-00709-x
Burgin, M., Eberbach, E., & Mikkilineni, R. (2019). Cloud computing and cloud automata as a new paradigm for computation. Computer Reviews Journal, 4, 113–134.
Google Scholar
Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems , 25(6), 599–616.
Article
Google Scholar
Cai, Y., Lu, W., Wang, L., & Xing, W. (2015). Cloud computing research analysis using bibliometric method. International Journal of Software Engineering and Knowledge Engineering, 25(03), 551–571.
Article
Google Scholar
Chen, B., Tsutsui, S., Ding, Y., & Ma, F. (2017). Understanding the topic evolution in a scientific domain: An exploratory study for the field of information retrieval. Journal of Informetrics , 11(4), 1175–1189. https://doi.org/10.1016/j.joi.2017.10.003
Article
Google Scholar
Coccia, M. (2017). Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms. Technology Analysis & Strategic Management, 29(9), 1048–1061. https://doi.org/10.1080/09537325.2016.1268682
Article
Google Scholar
Coccia , M. ( 2018 ) . classification of innovation consider technological interaction .Journal of Economics Bibliography, 5( 2 ) , 76–93 . https://doi.org/10.1453/jeb.v5i2.1650
Article
Google Scholar
Coccia , M. ( 2018a ) . general property of the evolution of research field : a scientometric study of human microbiome evolutionary robotic and astrobiology .scientometric , 117(2), 1265–1283. https://doi.org/10.1007/s11192-018-2902-8
Coccia, M. (2019). What is technology and technology change? A new conception with systemic-purposeful perspective for technology analysis. Journal of Social and Administrative Sciences, 6(3), 145–169. https://doi.org/10.1453/jsas.v6i3.1957
Coccia, M. (2020). Destructive technologies for industrial and corporate change. In A. Farazmand (Ed.), Global encyclopedia of public administration, public policy, and governance. Cham: Springer. https://doi.org/10.1007/978-3-319-31816-5_3972-1
Chapter
Google Scholar
Coccia, M. (2020a). The evolution of scientific disciplines in applied sciences: dynamics and empirical properties of experimental physics. scientometric , 124(1), 451–487. https://doi.org/10.1007/s11192-020-03464-y
Coccia , M. ( 2024a ) . converge artificial intelligence and quantum technology : accelerated growth effect in technological evolution .Technologies, 12(5), 66. https://doi.org/10.3390/technologies12050066
Coccia, M. (2024b). The general theory of scientific variability for technological evolution. Science, 6(2), 31. https://doi.org/10.3390/sci6020031
Coccia M. , Bozeman B. ( 2016 ) . Allometric model to measure and analyze the evolution of international research collaboration .scientometric , 108( 3 ) , 1065–1084 . https://doi.org/10.1007/s11192-016-2027-x
Coccia, M. (2021). Technological innovation. In G. Ritzer & C. Rojek (Eds.), The Blackwell encyclopedia of sociology. Wiley. https://doi.org/10.1002/9781405165518.wbeost011.pub2
Chapter
Google Scholar
Coccia, M. (2022). Probability of discoveries between research fields to explain scientific and technological change. Technology in Society, 68, 101874. https://doi.org/10.1016/j.techsoc.2022.101874
Article
Google Scholar
Coccia , M. 2024 . technological trajectory in quantum computing to design a quantum ecosystem for industrial change .Technology Analysis & Strategic Management, 36( 8) , 1733–1748 . https://doi.org/10.1080/09537325.2022.2110056
Coccia M; Roshani M. (2024). Path-breaking directions in quantum computing technology: A patent analysis with multiple techniques. Journal of the Knowledge Economy. https://doi.org/10.1007/s13132-024-01977-y
Costas, R., Corona-Sorbino, C., Robinson-Garcìa, N. (2024). Handbook of meta-research could ORCID play a key role in meta-research? Discussing new analytical possibilities to study the dynamics of science and scientists. Edward Elgar Publishing 215–232
Coccia M., Roshani, S. (2024a). General laws of funding for scientific citations: how citations change in funded and unfunded research between basic and applied sciences. Journal of Data and Information Science , 9(1), 1–18. https://doi.org/10.2478/jdis-2024-0005
Coccia, M., Roshani, S. (2024b). Research funding and citations in papers of nobel laureates in physics, chemistry and medicine, 2019-2020. Journal of Data and Information Science , 9(2), 1–25. https://doi.org/10.2478/jdis-2024-0006
Coccia Lili M , Wang ( 2016 ) evolution and convergence of the pattern of international scientific collaboration .Significance proceeding of the National Academy of Sciences , 113( 8) , 2057–2061 . https://doi.org/10.1073/pnas.1510820113
Coccia, M., Watts J. 2020. A theory of the evolution of technology: technological parasitism and the implications for innovation management. Journal of Engineering and Technology Management , 55, 101552, https://doi.org/10.1016/j.jengtecman.2019.11.003
Coccia , M. , Roshani S. , Mosleh M. ( 2021 ) . scientific development and new technological trajectory in sensor .Research Sensors, 21(23), 7803. https://doi.org/10.3390/s21237803
Coccia, M., Mosleh, M., & Roshani, S. (2024). Evolution of quantum computing: Theoretical and innovation management implications for emerging quantum industry. IEEE Transactions on Engineering Management , 71, 2270–2280. https://doi.org/10.1109/TEM.2022.3175633
Article
Google Scholar
Coccia, M., & Roshani, S. (2024). Evolutionary phases in emerging technologies: Theoretical and managerial implications from quantum technologies. IEEE Transactions on Engineering Management. https://doi.org/10.1109/TEM.2024.3385116
Article
Google Scholar
Coccia, M., Roshani, S., & Mosleh, M. (2022). Evolution of sensor research for clarifying the dynamics and properties of future directions. Sensors, 22(23), 9419. https://doi.org/10.3390/s22239419
Article
Google Scholar
Cornolti, M., Ferragina, P., & Ciaramita, M. (2013). A framework for benchmarking entity-annotation systems. In Proceedings of the 22nd international conference on World Wide Web (pp. 249–260).
Cresswell, K., Hernández, A. D., Williams, R., & Sheikh, A. (2022). Key challenges and opportunities for cloud technology in health care: Semistructured interview study. JMIR Human Factors, 9( 1 ) , e31246 .
Article
Google Scholar
Curiac, C. D., & Micea, M. V. (2023). Identifying hot information security topics Using LDA and multivariate Mann–Kendall test. IEEE Access, 11, 18374–18384.
Article
Google Scholar
Cuzzola, J., Jovanović, J., Bagheri, E., & Gašević, D. (2015). Evolutionary fine-tuning of automated semantic annotation systems. Expert Systems with application , 42( 20 ) , 6864–6877 .
Article
Google Scholar
Darwish, A., Hassanien, A. E., Elhoseny, M., Sangaiah, A. K., & Muhammad, K. (2019). The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: Opportunities, challenges, and open problems. Journal of Ambient Intelligence and Humanized Computing, 10, 4151–4166.
Article
Google Scholar
Dernis, H., Squicciarini, M., & de Pinho, R. (2016). Detecting the emergence of technologies and the evolution and co-development trajectories in science (DETECTS): A ‘burst ’analysis-based approach. The Journal of Technology Transfer, 41, 930–960.
Article
Google Scholar
Ebadi, A., Tremblay, S., Goutte, C., & Schiffauerova, A. (2020). Application of machine learning techniques to assess the trends and alignment of the funded research output. Journal of Informetrics , 14( 2 ) , 101018 .
Article
Google Scholar
Erdogmus, H. (2009). Cloud Computing: Does Nirvana Hide Behind the Nebula? IEEE Software, 26( 2 ) , 4–6 .
Article
Google Scholar
Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, web of science, and Google scholar: Strengths and weaknesses. The FASEB Journal, 22(2), 338–342.
Article
Google Scholar
Ferragina, P., & Scaiella, U. (2010). Tagme: On-the-fly annotation of short text fragments (by wikipedia entities). In Proceedings of the 19th ACM international conference on Information and knowledge management (pp. 1625–1628).
Ghazinoori, S., Roshani, S., Hafezi, R., & Wood, D. A. (2023). Bursting into the Public Eye: Analyzing the Development of Renewable Energy Research Interests. renewable Energy Focus , 47, 100496.
Article
Google Scholar
Gohr, A., Hinneburg, A., Schult, R., & Spiliopoulou, M. (2009). Topic evolution in a stream of documents. In Proceedings of the 2009 SIAM international conference on data mining (Vol. 1, pp. 859–870). https://doi.org/10.1137/1.9781611972795.74
Hafezi, R., Zare, S. G., Taghikhah, F. R., & Roshani, S. (2024). How Universities Study the Future: A Critical View. Futures, 103439.
Article
Google Scholar
Hamed, K. H., & Rao, A. R. (1998). A modified Mann–Kendall trend test for autocorrelated data. Journal of Hydrology, 204( 1–4 ) , 182–196 .
Article
Google Scholar
Hassanzadeh, A., Namdarian, L., Majidpour, M., & Elahi, S. B. (2015). Developing a model to evaluate the impacts of science, technology and innovation foresight on policy-making. Technology Analysis & Strategic Management, 27(4), 437–460.
Heilig, L., & Voß, S. (2014). A scientometric analysis of cloud computing literature. IEEE Transactions on Cloud Computing , 2(3), 266–278.
Article
Google Scholar
Hoberg, P., Wollersheim, J. & Krcmar, H. (2012). The business perspective on cloud computing—A literature review of research on cloud computing. In AMCIS 2012 Proceedings (Vol. 5). http://aisel.aisnet.org/amcis2012/proceedings/EnterpriseSystems/5
Hofmann, T. (1999). Probabilistic latent semantic indexing. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval (pp. 50–57).
Huang, J. Y., & Chen, R. C. (2019). Exploring the intellectual structure of cloud patents using non-exhaustive overlaps. scientometric , 121(2), 739–769.
Article
Google Scholar
Hussain, M., & Mahmud, I. (2019). pyMannKendall: A python package for non-parametric Mann Kendall family of trend tests. Journal of Open Source Software, 4(39), 1556. https://doi.org/10.21105/joss.01556
Article
Google Scholar
Huang, Hung-Tu., Hsu, Jia-Yen. (2017). Technology–function matrix based network analysis of cloud computing. scientometric , 113( 1 ) , 17 – 44 . https://doi.org/10.1007/s11192-017-2469-9
Jacobides, M. G., Brusoni, S., & Candelon, F. (2021). The evolutionary dynamics of the artificial intelligence ecosystem. Strategy Science, 6(4), 412–435.
Article
Google Scholar
Kale, M., & Mente, R. (2017). Impact of cloud computing on education system. International Journal of Electronics , Electrical and Computational System IJEECS , 6(11), 139–144.
Google Scholar
Kendall, M. G. (1975). Rank correlation methods (4th ed.). Charles Griffin.
Google Scholar
Kleinberg , J. ( 2002 ) . bursty and hierarchical structure in stream . InProceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining ( pp . 91–101 ) .
Kuhn T. ( 1962 ) .The structure of scientific revolution (1970, 2nd ed., with postscript). University of Chicago Press.
Landauer, T. K., Foltz, P. W., & Laham, D. (1998). An introduction to latent semantic analysis. Discourse Processes , 25(2–3), 259–284.
Article
Google Scholar
Latifian, A. (2022). How does cloud computing help businesses to manage big data issues. Kybernetes: the International Journal of Systems & Cybernetics, 51(6), 1917–1948. https://doi.org/10.1108/K-05-2021-0432
Article
Google Scholar
Linnenluecke, M. K., Marrone, M., & Singh, A. K. (2020). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management , 45( 2 ) , 175–194 .
Article
Google Scholar
Liu, Y., & Wang, T. (2022). Quality factors and performance outcome of cloud-based marketing system. Kybernetes, 51(1), 485–503. https://doi.org/10.1108/K-11-2020-0778
Article
Google Scholar
Liu, Z., Liu, Y., Guo, Y., & Wang, H. (2013). Progress in global parallel computing research: A bibliometric approach. scientometric , 95(3), 967–983.
Article
Google Scholar
Lyu, Y., Li, W., Guo, Q., & Wu, H. (2024). Mapping knowledge landscapes and emerging trends of Marburg virus: A text-mining study. Heliyon, 10(8), e29691. https://doi.org/10.1016/j.heliyon.2024.e29691
Madlock-Brown, C. R. (2014). A framework for emerging topic detection in biomedicine. The University of Iowa .
Mane, K. K., & Börner, K. (2004). Mapping topics and topic bursts in PNAS. proceeding of the National Academy of Sciences , 101( suppl_1 ) , 5287–5290 .
Article
Google Scholar
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245. https://doi.org/10.2307/1907187
Marrone , M. ( 2020 ) . application of entity link to identify research front and trend .scientometric , 122( 1 ) , 357–379 . https://doi.org/10.1007/s11192-019-03274-x
Article
Google Scholar
Marrone, M., Lemke, S., & Kolbe, L. M. (2022). Entity linking systems for literature reviews. scientometric. https://doi.org/10.1007/s11192-022-04423-5
Article
Google Scholar
Mell, P., & Grance, T. (2010). The NIST Definition of Cloud Computing. communication of the ACM , 53(6), 50.
Google Scholar
Mosleh, M., Roshani, S., & Coccia, M. (2022). Scientific laws of research funding to support citations and diffusion of knowledge in life science. scientometric , 127( 4 ) , 1931–1951 . https://doi.org/10.1007/s11192-022-04300-1 .
Nallola, S. R., & Ayyasamy, V. (2023). Insights on cloud computing: A bibliometric analysis [Preprint]. In Review. https://doi.org/10.21203/rs.3.rs-3012428/v1
Nederhof, A., & Van Wijk, E. (1997). Mapping the social and behavioral sciences world-wide: Use of maps in portfolio analysis of national research efforts. scientometric , 40( 2 ) , 237–276 .
Article
Google Scholar
NIST. (2022). Final version of NIST cloud computing. Updated January 8, 2018. Retrieved February 2022, from https://www.nist.gov/news-events/news/2011/10/final-version-nist-cloud-computing-definition-published.
Padilla, R. S., Milton, S. K., & Johnson, L. W. (2015). Components of service value in business-to-business cloud computing. J Cloud Comp, 4, 15. https://doi.org/10.1186/s13677-015-0040-x
Article
Google Scholar
Papazoglou M. P., & Vaquero L. M. (2012). Knowledge-intensive cloud services: Transforming the cloud delivery stack, knowledge service engineering handbook (pp. 449–494). Taylor & Francis Group.
Roshani, S., Coccia, M., Mosleh, M. (2022). Sensor technology for opening new pathways in diagnosis and therapeutics of breast lung colorectal and prostate cancer. HighTech and Innovation Journal, 3(3), 356–375. https://doi.org/10.28991/HIJ-2022-03-03-010
Saheb, T., Dehghani, M., & Saheb, T. (2022). Artificial intelligence for sustainable energy: A contextual topic modeling and content analysis. sustainable Computing : Informatics and Systems , 35, 100699.
Google Scholar
Sci2 Team. (2009). Science of Science (Sci2) Tool. Indiana University and SciTech Strategies. Retrieved November 24, 2016, from https://Sci2.cns.iu.edu.
Sharma, D., Kumar, B., & Chand, S. (2019). A trend analysis of machine learning research with topic models and Mann–Kendall test. International Journal of Intelligent Systems and Applications., 11(2), 70–82. https://doi.org/10.5815/ijisa.2019.02.08
Article
Google Scholar
Singh, V. K., Singh, P., Karmakar, M., Leta, J., & Mayr, P. (2021). The journal coverage of web of science, Scopus and dimensions: A comparative analysis. scientometric , 126, 5113–5142.
Article
Google Scholar
Sun, X., Kaur, J., Milojevic’, S., Flammini, A., & Menczer, F. (2013). Social dynamics of science. scientific report , 3(1069), 1–6. https://doi.org/10.1038/srep01069
Article
Google Scholar
Wagiu , EB . , Liu , C. -M. , Palopak , Y. ( 2024 ) . mapping technological trajectory of edge computing : A citation graph analysis .IEEE Internet of Things Journal, 11(9), 16545–16560. https://doi.org/10.1109/JIOT.2024.3355056
Wang, Y., Agichtein, E., & Benzi, M. (2012). TM-LDA: Efficient online modeling of latent topic transitions in social media. In Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 123–131). https://doi.org/10.1145/2339530.2339552
Wang, J., & Hsu, C. C. (2021). A topic-based patent analytics approach for exploring technological trends in smart manufacturing. Journal of Manufacturing Technology Management, 32(1), 110–135.
Article
Google Scholar
Wang, N., Liang, H., Jia, Y., Ge, S., Xue, Y., & Wang, Z. (2016). Cloud computing research in the IS discipline: A citation/co-citation analysis. decision Support Systems , 86, 35–47.
Article
Google Scholar
Web of Science (WOS). (2021). Documents. Retrieved November 20, 2021, from https://www.webofscience.com/wos/woscc/basic-search
Xu, S., Hao, L., Yang, G., Lu, K., & An, X. (2021). A topic models based framework for detecting and forecasting emerging technologies. Technological Forecasting and Social Change, 162, 120366.
Article
Google Scholar
Yang, H., & Tate, M. 2012. A descriptive literature review and classification of cloud computing research. Communications of the Association for Information Systems. https://doi.org/10.17705/1CAIS.03102
Zhang, S., & Lu, X. X. (2009). Hydrological responses to precipitation variation and diverse human activities in a mountainous tributary of the lower Xijiang, China. CATENA , 77( 2 ) , 130–142 .
Article
Google Scholar
Zhao, W., Chen, J. J., Perkins, R., et al. (2015). A heuristic approach to determine an appropriate number of topics in topic modeling. BMC Bioinformatics, 16(Suppl 13), S8. https://doi.org/10.1186/1471-2105-16-S13-S8
Article
Google Scholar