Document
Robustness of the relationship between tropical high-cloud cover and large-scale circulations

Robustness of the relationship between tropical high-cloud cover and large-scale circulations

Arora VK , Scinocca JF , Boer GJ , Christian JR , Denman KL , Flato GM , Kharin VV , Lee WG , Merryfield WJ ( 2011 ) Carbon emission limit require to

Related articles

Little Boy On Cloudultra Review: On’s Super Cushioned Trail Shoes Best Cloud Storage for Android 2025 Apps for More Phone Storage How to add CloudEdge camera/doorbell to iSpy/Agent DVR? Fix WhatsApp Connecting & Reconnecting On iPhone
  • Arora VK , Scinocca JF , Boer GJ , Christian JR , Denman KL , Flato GM , Kharin VV , Lee WG , Merryfield WJ ( 2011 ) Carbon emission limit require to satisfy future representative concentration pathway of greenhouse gas . Geophys Res Lett 38(5):L05805 . https://doi.org/10.1029/2010GL046270

    article  

    Google Scholar  

  • Bony S , Stevens B , Coppin D , Becker T , Reed K , Voigt A , Medeiros B ( 2016 ) thermodynamic control of anvil cloud amount . Proc Natl Acad Sci USA 113:8927–8932 . https://doi.org/10.1073/pnas.1601472113

    article  
    CAS  

    Google Scholar  

  • Boucher O, Servonnat J, Albright AL et al (2020) Presentation and evaluation of the IPSL-CM6A-LR climate model. J Adv Model Earth Syst 12(7):e2019MS002010. https://doi.org/10.1029/2019MS002010

    article  

    Google Scholar  

  • Cesana G, Chepfer H (2012) How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models. Geophys Res Lett 39(20):L20803. https://doi.org/10.1029/2012GL053153

    article  

    Google Scholar  

  • Chen Y-W, Seiki T, Kodama C, Satoh M, Noda AT, Yamada Y (2016) High cloud responses to global warming simulated by two different cloud microphysics schemes implemented in the nonhydrostatic icosahedral atmospheric model (NICAM). J Clim 29:5949–5964. https://doi.org/10.1175/JCLI-D-15-0668.1

    article  

    Google Scholar  

  • Collins WJ , Bellouin N , Doutriaux – Boucher M et al ( 2011 ) development and evaluation of an earth – system model – hadgem2 . Geosci Model Dev is Discuss Discuss 4:997–1062 . https://doi.org/10.5194/gmdd-4-997-2011

    article  

    Google Scholar  

  • Danabasoglu G , Lamarque J – F , Bacmeister J et al ( 2020 ) The community Earth system model version 2 ( cesm2 ) . J Adv Model Earth Syst 12 : e2019MS001916 . https://doi.org/10.1029/2019MS001916

    article  

    Google Scholar  

  • Donner LJ, Wyman BL, Hemler RS et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24:3484–3519. https://doi.org/10.1175/2011JCLI3955.1

    article  

    Google Scholar  

  • Dufresne J – L is Contrasts , Quaas J , Boucher O , Denvil S , Fairhead l ( 2005 ) contrast in the effect on climate of anthropogenic sulfate aerosol between the 20th and the 21st century . Geophys Res Lett 32 : L21703 . https://doi.org/10.1029/2005GL023619

    article  

    Google Scholar  

  • Dufresne J – L , Foujols M – A , Denvil S et al ( 2012 ) climate change projection using the IPSL – cm5 Earth System Model : from CMIP3 to CMIP5 . Clim Dyn 40:2123–2165 . https://doi.org/10.1007/s00382-012-1636-1

    article  

    Google Scholar  

  • Eaton BE (2010) User’s Guide to the Community Atmosphere Model AM4.0, Technical report, National Center for Atmospheric Research, Boulder, Colorado

  • Golaz C, Van Roekel LP, Zheng X et al (2022) The DOE E3SM Model Version 2: Overview of the physical model and initial model evaluation. J Adv Model Earth Syst 14(12):e2022MS003156. https://doi.org/10.1029/2022MS003156

    article  

    Google Scholar  

  • Hajima T, Watanabe M, Yamamoto A et al (2020) Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci Model Dev 13(5):2197–2244. https://doi.org/10.5194/gmd-13-2197-2020

    article  

    Google Scholar  

  • Harada Y, Kamahori H, Kobayashi C, Endo H, Kobayashi S, Ota Y, Onoda H, Onogi K, Miyaoka K, Takahashi K (2016) The JRA-55 reanalysis: representation of atmospheric circulation and climate variability. J Meteorol Soc Japan 94:269–302. https://doi.org/10.2151/jmsj.2016-015

    article  

    Google Scholar  

  • Hartmann DL, Larson K (2002) An important constraint on tropical cloud-climate feedback. Geophys Res Lett. https://doi.org/10.1029/2002GL015835

    article  

    Google Scholar  

  • hold IM , Guo H , Adcroft A et al ( 2019 ) structure and performance of GFDL ’s CM4.0 climate model . J Adv Model Earth Syst 11:3691–3727 . https://doi.org/10.1029/2019MS001829

    article  

    Google Scholar  

  • Hourdin F , Foujols MA , Codron F et al ( 2013a ) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL – CM5A couple model . Clim Dyn 40:2167–2192 . https://doi.org/10.1007/s00382-012-1411-3

    article  

    Google Scholar  

  • Hourdin F, Grandpeix J-Y, Rio C et al (2013b) LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Clim Dyn 40:2198–2222. https://doi.org/10.1007/s00382-012-1343-y

    article  

    Google Scholar  

  • Ito M, Masunaga H (2022) Process-level assessment of the Iris effect over tropical oceans. Geophys Res Lett 49(7):e2022GL097997. https://doi.org/10.1029/2022gl097997

    article  

    Google Scholar  

  • Jeevanjee N ( 2022 ) Three rule for the decrease of tropical convection with global warming . J Adv Model Earth Syst 14 : e2022MS003285 . https://doi.org/10.1029/2022MS003285

    article  

    Google Scholar  

  • Jeevanjee N, Zhou L (2022) On the resolution-dependence of anvil cloud fraction and precipitation efficiency in radiative-convective equilibrium. J Adv Model Earth Syst 14:e2021MS002759. https://doi.org/10.1029/2021MS002759

    article  

    Google Scholar  

  • Jones CD, Hughes JK, Bellouin N et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570. https://doi.org/10.5194/gmd-4-543-2011

    article  

    Google Scholar  

  • Kawai H , Yukimoto S , Koshiro T , Oshima N , Tanaka T , Yoshimura H , Nagasawa R ( 2019 ) significant improvement of cloud representation in global climate model MRI – ESM2 . Geosci Model Dev 12(7):2875–2897 . https://doi.org/10.5194/gmd-12-2875-2019

    article  
    CAS  

    Google Scholar  

  • Kim D, Sobel AH, Del Genio A, Chen Y, Camargo SJ, Yao M-S, Kelley M, Nazarenko L (2012) The tropical subseasonal variability simulated in the NASA GISS general circulation model. J Clim 25:4641–4659. https://doi.org/10.1175/JCLI-D-11-00447.1

    article  

    Google Scholar  

  • Kobayashi S, Ota Y, Harada Y et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Japan 93:5–48. https://doi.org/10.2151/jmsj.2015-001

    article  

    Google Scholar  

  • Kodama C , Yamada Y , Noda AT et al ( 2015 ) A 20 – year climatological of a NICAM AMIP – type simulation . J Meteorol Soc Japan 93(4):393–424 . https://doi.org/10.2151/jmsj.2015-024

    article  

    Google Scholar  

  • Kodama C, Kodama C, Ohno T et al (2021) The Nonhydrostatic ICosahedral Atmospheric Model for CMIP6 HighResMIP simulations (NICAM16-S): experimental design, model description, and impacts of model updates. Geosc Model Dev 14(2):795–820. https://doi.org/10.5194/gmd-14-795-2021

    article  
    CAS  

    Google Scholar  

  • Martin GM, Bellouin N, Collins WJ et al (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4:723–757. https://doi.org/10.5194/gmd-4-723-2011

    article  

    Google Scholar  

  • Neale RB, Richter J, ParkS LPH, Vavrus SJ, Rasch PJ, Zhang M (2013) The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J Clim 26(14):5150–5168. https://doi.org/10.1175/JCLI-D-12-00236.1

    article  

    Google Scholar  

  • Neale RB, Chen CC, Gettelman A et al (2010) Description of the NCAR community atmosphere model (CAM 5.0), NCAR Technical Note NCAR/TN-486+ 5 STR.

  • Noda AT , Oouchi K , Satoh M , Tomita H ( 2012 ) quantitative assessment of diurnal variation of tropical convection simulate by a global nonhydrostatic model without cumulus parameterization . J Clim 25:5119–5134 . https://doi.org/10.1175/JCLI-D-11-00295.1

    article  

    Google Scholar  

  • Noda AT , Satoh M , Yamada Y , Kodama C , Seiki T ( 2014 ) response of tropical and subtropical high – cloud statistic to global warming . J Clim 27:7753–7768 . https://doi.org/10.1175/jcli-d-14-00179.1

    article  

    Google Scholar  

  • Noda AT , Seiki T , Satoh M , Yamada Y ( 2016 ) high cloud size dependency in the applicability of the fix anvil temperature hypothesis using global nonhydrostatic simulation . Geophys Res Lett 43(5):2307–2314 . https://doi.org/10.1002/2016gl067742

    article  

    Google Scholar  

  • Noda AT , Kodama C , Yamada Y , Satoh M , Ogura T , Ohno T ( 2019 ) response of cloud and large – scale circulation to global warming evaluate from multidecadal simulation using a global nonhydrostatic model . J Adv Model Earth Syst 11:2980–2995 . https://doi.org/10.1029/2019MS001658

    article  

    Google Scholar  

  • Noda AT, Ohno T, Kodama C, Chen Y-W, Kuba N, Seiki T, Yamada Y, Satoh M (2023) Recent global nonhydrostatic modeling approach without using a cumulus parameterization to understand the mechanisms underlying cloud changes due to global warming. Prog Earth Planet Sci 10:48. https://doi.org/10.1186/s40645-023-00583-x

    article  

    Google Scholar  

  • Ohno T , Noda AT , Seiki T , Satoh M ( 2021 ) importance of pressure change in high cloud area feedback due to global warming . Geophys Res Lett 48(18):e2021GL093646 . https://doi.org/10.1029/2021GL093646

    article  

    Google Scholar  

  • Ringer MA, Andrews T, Webb MJ (2014) Global-mean radiative feedbacks and forcing in atmosphere-only and coupled atmosphere-ocean climate change experiments. Geophys Res Lett 41(11):4035–4042. https://doi.org/10.1002/2014gl060347

    article  

    Google Scholar  

  • Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80:2261–2287. https://doi.org/10.1175/1520-0477(1999)080%3c2261:AIUCFI%3e2.0.CO;2

    article  

    Google Scholar  

  • Saint – Lu M , Bony S , Dufresne JL ( 2020 ) observational evidence for a stability iris effect in the tropic . Geophys Res Lett 47(14):e2020GL089059 . https://doi.org/10.1029/2020gl089059

    article  

    Google Scholar  

  • Saint-Lu M, Bony S, Dufresne J-L (2022) Clear-sky control of anvils in response to increased CO2 or surface warming or volcanic eruptions. NPJ Clim Atmos Sci 5(1):78. https://doi.org/10.1038/s41612-022-00304-z

    article  
    CAS  

    Google Scholar  

  • Satoh M, Iga S, Tomita H, Tsushima Y, Noda AT (2012) Response of upper clouds in global warming experiments obtained using global nonhydrostatic model with explicit cloud processes. J Clim 25:2178–2191. https://doi.org/10.1175/JCLI-D-11-00152.1

    article  

    Google Scholar  

  • Satoh M, Tomita H, Yashiro H et al (2014) The Non-hydrostatic Icosahedral Atmospheric Model: description and development. Prog Earth Planet Sci 1:18. https://doi.org/10.1186/s40645-014-0018-1

    article  

    Google Scholar  

  • Sellar AA, Jones CG, Mulcahy JP et al (2019) UKESM1: Description and evaluation of the UK Earth System Model. J Adv Model Earth Syst 11(12):4513–4558. https://doi.org/10.1029/2019MS001739

    article  

    Google Scholar  

  • Sherwood SC, Webb MJ, Annan JD et al (2020) An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev Geophys 58:e2019RG000678. https://doi.org/10.1029/2019RG000678

    article  
    CAS  

    Google Scholar  

  • Singh MS, O’Gorman PA (2015) Increases in moist-convective updraft velocities with warming in radiative-convective equilibrium. Q J R Meteorol Soc 141(692):2828–2838. https://doi.org/10.1002/qj.2567

    article  

    Google Scholar  

  • Slingo J, Bates P, Bauer P, Belcher S, Palmer T, Stephens G, Stevens B, Stocker T, Teutsch G (2022) Ambitious partnership needed for reliable climate prediction. Nat Clim Change 12:499–503. https://doi.org/10.1038/s41558-022-01384-8

    article  

    Google Scholar  

  • Stevens B, Giorgetta M, Esch M et al (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5:146–172. https://doi.org/10.1002/jame.20015

    article  

    Google Scholar  

  • Swart NC, Cole JNS, Kharin VV et al (2019) The Canadian Earth system model version 5 (CanESM5.0.3). Geosci Model Dev 12(11):4823–4873. https://doi.org/10.5194/gmd-12-4823-2019

    article  
    CAS  

    Google Scholar  

  • Takasuka D is improve , Kodama C , Suematsu T et al ( 2024 ) How can we is improve improve the seamless representation of climatological statistic and weather toward reliable global k – scale climate simulation ? J Adv Model Earth Syst 16:2e023M003701 . https://doi.org/10.1029/2023MS003701

    article  

    Google Scholar  

  • Tatebe H, Ogura T, Nitta T et al (2019) Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci Model Dev 12(7):2727–2765. https://doi.org/10.5194/gmd-12-2727-2019

    article  
    CAS  

    Google Scholar  

  • Voldoire A, Sanchez-Gomez E, Salas y Melia D, et al (2012) The CNRM-CM5.1 global climate model: Description and basic evaluation. Clim Dyn 40:2091–2121. https://doi.org/10.1007/s00382-011-1259-y

    article  

    Google Scholar  

  • Voldoire A, Saint-Martin D, Senesi S et al (2019) Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J Adv Model Earth Syst 11(7):2177–2213. https://doi.org/10.1029/2019MS001683

    article  

    Google Scholar  

  • Waliser DE, Li JLF, Woods CP et al (2009) Cloud ice: A climate model challenge with signs and expectations of progress. J Geophys Res 114:D00A21. https://doi.org/10.1029/2008JD010015

    article  

    Google Scholar  

  • Watanabe M, Suzuki T, O’ishi R et al (2010) Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J Clim 23:6312–6335. https://doi.org/10.1175/2010JCLI3679.1

    article  

    Google Scholar  

  • Webb MJ, Andrews T, Bodas-Salcedo A et al (2017) The cloud feedback model intercomparison project (CFMIP) contribution to CMIP6. Geosci Model Dev 10:359–384. https://doi.org/10.5194/gmd-10-359-2017

    article  
    CAS  

    Google Scholar  

  • Williams KD, Copsey D, Blockley EW et al (2017) The Met Office global coupled model 3.0 and 3.1 (GC3.0 and GC3.1) configurations. J Adv Model Earth Syst 10(2):357–380. https://doi.org/10.1002/2017MS001115

    article  

    Google Scholar  

  • Wu T, Yu R, Zhang F, Wang Z, Dong M, Wang L, Jin X, Chen DL, Li L (2010) The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate. Clim Dyn 34:123–147. https://doi.org/10.1007/s00382-008-0487-2

    article  

    Google Scholar  

  • Wu T , Li W , Ji J et al ( 2013 ) global carbon budget simulate by the Beijing climate center climate system model for the last century . J Geophys Res Atmos 118:4326–4347 . https://doi.org/10.1002/jgrd.50320

    article  
    CAS  

    Google Scholar  

  • Wu T, Lu Y, Fang Y et al (2019) The Beijing climate center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci Model Dev 12:1573–1600. https://doi.org/10.5194/gmd-12-1573-2019

    article  

    Google Scholar  

  • Yamada Y , Satoh M , Sugi M , Kodama C , Noda AT , Nakano M , Nasuno T ( 2017 ) response of tropical cyclone activity and structure to global warming in a high – resolution global nonhydrostatic model . J Clim 30:9703–9724 . https://doi.org/10.1175/jcli-d-17-0068.1

    article  

    Google Scholar  

  • Yukimoto S, Adachi Y, Hosaka M et al (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3-Model description and basic performance. J Meteorol Soc Japan 90a:23–64. https://doi.org/10.2151/jmsj.2012-A02

    article  

    Google Scholar  

  • Yukimoto S, Kawai H, Koshiro T et al (2019) The meteorological research institute Earth system model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J Meteorol Soc Japan 97(5):931–965. https://doi.org/10.2151/jmsj.2019-051

    article  

    Google Scholar  

  • Yukimoto S, Yoshimura H, Hosaka M et al (2011) Meteorological Research Institute Earth System Model Version 1 (MRI-ESM1) Model description. Technical Report no. 64. Tsukuba, Japan: Meteorological Research Institute. https://doi.org/10.11483/mritechrepo.64

  • Zelinka MD , Hartmann DL ( 2010 ) Why is longwave cloud feedback positive ? J Geophys Res 115 : d16117 . https://doi.org/10.1029/2010JD013817

    article  

    Google Scholar  

  • Zelinka MD, Zhou C, Klein SA (2016) Insights from a refined decomposition of cloud feedbacks. Geophys Res Lett 43:9259–9269. https://doi.org/10.1002/2016GL069917

    article  

    Google Scholar  

  • Zelinka MD , Randall DA , Webb MJ , Klein SA ( 2017 ) clear cloud of uncertainty . Nat Clim Chang 7:674–678 . https://doi.org/10.1038/nclimate3402

    article  

    Google Scholar