No results found
We couldn't find anything using that term, please try searching for something else.
Arora VK , Scinocca JF , Boer GJ , Christian JR , Denman KL , Flato GM , Kharin VV , Lee WG , Merryfield WJ ( 2011 ) Carbon emission limit require to
Arora VK , Scinocca JF , Boer GJ , Christian JR , Denman KL , Flato GM , Kharin VV , Lee WG , Merryfield WJ ( 2011 ) Carbon emission limit require to satisfy future representative concentration pathway of greenhouse gas . Geophys Res Lett 38(5):L05805 . https://doi.org/10.1029/2010GL046270
article
Google Scholar
Bony S , Stevens B , Coppin D , Becker T , Reed K , Voigt A , Medeiros B ( 2016 ) thermodynamic control of anvil cloud amount . Proc Natl Acad Sci USA 113:8927–8932 . https://doi.org/10.1073/pnas.1601472113
article
CAS
Google Scholar
Boucher O, Servonnat J, Albright AL et al (2020) Presentation and evaluation of the IPSL-CM6A-LR climate model. J Adv Model Earth Syst 12(7):e2019MS002010. https://doi.org/10.1029/2019MS002010
article
Google Scholar
Cesana G, Chepfer H (2012) How well do climate models simulate cloud vertical structure? A comparison between CALIPSO-GOCCP satellite observations and CMIP5 models. Geophys Res Lett 39(20):L20803. https://doi.org/10.1029/2012GL053153
article
Google Scholar
Chen Y-W, Seiki T, Kodama C, Satoh M, Noda AT, Yamada Y (2016) High cloud responses to global warming simulated by two different cloud microphysics schemes implemented in the nonhydrostatic icosahedral atmospheric model (NICAM). J Clim 29:5949–5964. https://doi.org/10.1175/JCLI-D-15-0668.1
article
Google Scholar
Collins WJ , Bellouin N , Doutriaux – Boucher M et al ( 2011 ) development and evaluation of an earth – system model – hadgem2 . Geosci Model Dev is Discuss Discuss 4:997–1062 . https://doi.org/10.5194/gmdd-4-997-2011
article
Google Scholar
Danabasoglu G , Lamarque J – F , Bacmeister J et al ( 2020 ) The community Earth system model version 2 ( cesm2 ) . J Adv Model Earth Syst 12 : e2019MS001916 . https://doi.org/10.1029/2019MS001916
article
Google Scholar
Donner LJ, Wyman BL, Hemler RS et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24:3484–3519. https://doi.org/10.1175/2011JCLI3955.1
article
Google Scholar
Dufresne J – L is Contrasts , Quaas J , Boucher O , Denvil S , Fairhead l ( 2005 ) contrast in the effect on climate of anthropogenic sulfate aerosol between the 20th and the 21st century . Geophys Res Lett 32 : L21703 . https://doi.org/10.1029/2005GL023619
article
Google Scholar
Dufresne J – L , Foujols M – A , Denvil S et al ( 2012 ) climate change projection using the IPSL – cm5 Earth System Model : from CMIP3 to CMIP5 . Clim Dyn 40:2123–2165 . https://doi.org/10.1007/s00382-012-1636-1
article
Google Scholar
Eaton BE (2010) User’s Guide to the Community Atmosphere Model AM4.0, Technical report, National Center for Atmospheric Research, Boulder, Colorado
Golaz C, Van Roekel LP, Zheng X et al (2022) The DOE E3SM Model Version 2: Overview of the physical model and initial model evaluation. J Adv Model Earth Syst 14(12):e2022MS003156. https://doi.org/10.1029/2022MS003156
article
Google Scholar
Hajima T, Watanabe M, Yamamoto A et al (2020) Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci Model Dev 13(5):2197–2244. https://doi.org/10.5194/gmd-13-2197-2020
article
Google Scholar
Harada Y, Kamahori H, Kobayashi C, Endo H, Kobayashi S, Ota Y, Onoda H, Onogi K, Miyaoka K, Takahashi K (2016) The JRA-55 reanalysis: representation of atmospheric circulation and climate variability. J Meteorol Soc Japan 94:269–302. https://doi.org/10.2151/jmsj.2016-015
article
Google Scholar
Hartmann DL, Larson K (2002) An important constraint on tropical cloud-climate feedback. Geophys Res Lett. https://doi.org/10.1029/2002GL015835
article
Google Scholar
hold IM , Guo H , Adcroft A et al ( 2019 ) structure and performance of GFDL ’s CM4.0 climate model . J Adv Model Earth Syst 11:3691–3727 . https://doi.org/10.1029/2019MS001829
article
Google Scholar
Hourdin F , Foujols MA , Codron F et al ( 2013a ) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL – CM5A couple model . Clim Dyn 40:2167–2192 . https://doi.org/10.1007/s00382-012-1411-3
article
Google Scholar
Hourdin F, Grandpeix J-Y, Rio C et al (2013b) LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Clim Dyn 40:2198–2222. https://doi.org/10.1007/s00382-012-1343-y
article
Google Scholar
Ito M, Masunaga H (2022) Process-level assessment of the Iris effect over tropical oceans. Geophys Res Lett 49(7):e2022GL097997. https://doi.org/10.1029/2022gl097997
article
Google Scholar
Jeevanjee N ( 2022 ) Three rule for the decrease of tropical convection with global warming . J Adv Model Earth Syst 14 : e2022MS003285 . https://doi.org/10.1029/2022MS003285
article
Google Scholar
Jeevanjee N, Zhou L (2022) On the resolution-dependence of anvil cloud fraction and precipitation efficiency in radiative-convective equilibrium. J Adv Model Earth Syst 14:e2021MS002759. https://doi.org/10.1029/2021MS002759
article
Google Scholar
Jones CD, Hughes JK, Bellouin N et al (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4:543–570. https://doi.org/10.5194/gmd-4-543-2011
article
Google Scholar
Kawai H , Yukimoto S , Koshiro T , Oshima N , Tanaka T , Yoshimura H , Nagasawa R ( 2019 ) significant improvement of cloud representation in global climate model MRI – ESM2 . Geosci Model Dev 12(7):2875–2897 . https://doi.org/10.5194/gmd-12-2875-2019
article
CAS
Google Scholar
Kim D, Sobel AH, Del Genio A, Chen Y, Camargo SJ, Yao M-S, Kelley M, Nazarenko L (2012) The tropical subseasonal variability simulated in the NASA GISS general circulation model. J Clim 25:4641–4659. https://doi.org/10.1175/JCLI-D-11-00447.1
article
Google Scholar
Kobayashi S, Ota Y, Harada Y et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Japan 93:5–48. https://doi.org/10.2151/jmsj.2015-001
article
Google Scholar
Kodama C , Yamada Y , Noda AT et al ( 2015 ) A 20 – year climatological of a NICAM AMIP – type simulation . J Meteorol Soc Japan 93(4):393–424 . https://doi.org/10.2151/jmsj.2015-024
article
Google Scholar
Kodama C, Kodama C, Ohno T et al (2021) The Nonhydrostatic ICosahedral Atmospheric Model for CMIP6 HighResMIP simulations (NICAM16-S): experimental design, model description, and impacts of model updates. Geosc Model Dev 14(2):795–820. https://doi.org/10.5194/gmd-14-795-2021
article
CAS
Google Scholar
Martin GM, Bellouin N, Collins WJ et al (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4:723–757. https://doi.org/10.5194/gmd-4-723-2011
article
Google Scholar
Neale RB, Richter J, ParkS LPH, Vavrus SJ, Rasch PJ, Zhang M (2013) The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J Clim 26(14):5150–5168. https://doi.org/10.1175/JCLI-D-12-00236.1
article
Google Scholar
Neale RB, Chen CC, Gettelman A et al (2010) Description of the NCAR community atmosphere model (CAM 5.0), NCAR Technical Note NCAR/TN-486+ 5 STR.
Noda AT , Oouchi K , Satoh M , Tomita H ( 2012 ) quantitative assessment of diurnal variation of tropical convection simulate by a global nonhydrostatic model without cumulus parameterization . J Clim 25:5119–5134 . https://doi.org/10.1175/JCLI-D-11-00295.1
article
Google Scholar
Noda AT , Satoh M , Yamada Y , Kodama C , Seiki T ( 2014 ) response of tropical and subtropical high – cloud statistic to global warming . J Clim 27:7753–7768 . https://doi.org/10.1175/jcli-d-14-00179.1
article
Google Scholar
Noda AT , Seiki T , Satoh M , Yamada Y ( 2016 ) high cloud size dependency in the applicability of the fix anvil temperature hypothesis using global nonhydrostatic simulation . Geophys Res Lett 43(5):2307–2314 . https://doi.org/10.1002/2016gl067742
article
Google Scholar
Noda AT , Kodama C , Yamada Y , Satoh M , Ogura T , Ohno T ( 2019 ) response of cloud and large – scale circulation to global warming evaluate from multidecadal simulation using a global nonhydrostatic model . J Adv Model Earth Syst 11:2980–2995 . https://doi.org/10.1029/2019MS001658
article
Google Scholar
Noda AT, Ohno T, Kodama C, Chen Y-W, Kuba N, Seiki T, Yamada Y, Satoh M (2023) Recent global nonhydrostatic modeling approach without using a cumulus parameterization to understand the mechanisms underlying cloud changes due to global warming. Prog Earth Planet Sci 10:48. https://doi.org/10.1186/s40645-023-00583-x
article
Google Scholar
Ohno T , Noda AT , Seiki T , Satoh M ( 2021 ) importance of pressure change in high cloud area feedback due to global warming . Geophys Res Lett 48(18):e2021GL093646 . https://doi.org/10.1029/2021GL093646
article
Google Scholar
Ringer MA, Andrews T, Webb MJ (2014) Global-mean radiative feedbacks and forcing in atmosphere-only and coupled atmosphere-ocean climate change experiments. Geophys Res Lett 41(11):4035–4042. https://doi.org/10.1002/2014gl060347
article
Google Scholar
Rossow WB, Schiffer RA (1999) Advances in understanding clouds from ISCCP. Bull Am Meteorol Soc 80:2261–2287. https://doi.org/10.1175/1520-0477(1999)080%3c2261:AIUCFI%3e2.0.CO;2
article
Google Scholar
Saint – Lu M , Bony S , Dufresne JL ( 2020 ) observational evidence for a stability iris effect in the tropic . Geophys Res Lett 47(14):e2020GL089059 . https://doi.org/10.1029/2020gl089059
article
Google Scholar
Saint-Lu M, Bony S, Dufresne J-L (2022) Clear-sky control of anvils in response to increased CO2 or surface warming or volcanic eruptions. NPJ Clim Atmos Sci 5(1):78. https://doi.org/10.1038/s41612-022-00304-z
article
CAS
Google Scholar
Satoh M, Iga S, Tomita H, Tsushima Y, Noda AT (2012) Response of upper clouds in global warming experiments obtained using global nonhydrostatic model with explicit cloud processes. J Clim 25:2178–2191. https://doi.org/10.1175/JCLI-D-11-00152.1
article
Google Scholar
Satoh M, Tomita H, Yashiro H et al (2014) The Non-hydrostatic Icosahedral Atmospheric Model: description and development. Prog Earth Planet Sci 1:18. https://doi.org/10.1186/s40645-014-0018-1
article
Google Scholar
Sellar AA, Jones CG, Mulcahy JP et al (2019) UKESM1: Description and evaluation of the UK Earth System Model. J Adv Model Earth Syst 11(12):4513–4558. https://doi.org/10.1029/2019MS001739
article
Google Scholar
Sherwood SC, Webb MJ, Annan JD et al (2020) An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev Geophys 58:e2019RG000678. https://doi.org/10.1029/2019RG000678
article
CAS
Google Scholar
Singh MS, O’Gorman PA (2015) Increases in moist-convective updraft velocities with warming in radiative-convective equilibrium. Q J R Meteorol Soc 141(692):2828–2838. https://doi.org/10.1002/qj.2567
article
Google Scholar
Slingo J, Bates P, Bauer P, Belcher S, Palmer T, Stephens G, Stevens B, Stocker T, Teutsch G (2022) Ambitious partnership needed for reliable climate prediction. Nat Clim Change 12:499–503. https://doi.org/10.1038/s41558-022-01384-8
article
Google Scholar
Stevens B, Giorgetta M, Esch M et al (2013) Atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5:146–172. https://doi.org/10.1002/jame.20015
article
Google Scholar
Swart NC, Cole JNS, Kharin VV et al (2019) The Canadian Earth system model version 5 (CanESM5.0.3). Geosci Model Dev 12(11):4823–4873. https://doi.org/10.5194/gmd-12-4823-2019
article
CAS
Google Scholar
Takasuka D is improve , Kodama C , Suematsu T et al ( 2024 ) How can we is improve improve the seamless representation of climatological statistic and weather toward reliable global k – scale climate simulation ? J Adv Model Earth Syst 16:2e023M003701 . https://doi.org/10.1029/2023MS003701
article
Google Scholar
Tatebe H, Ogura T, Nitta T et al (2019) Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci Model Dev 12(7):2727–2765. https://doi.org/10.5194/gmd-12-2727-2019
article
CAS
Google Scholar
Voldoire A, Sanchez-Gomez E, Salas y Melia D, et al (2012) The CNRM-CM5.1 global climate model: Description and basic evaluation. Clim Dyn 40:2091–2121. https://doi.org/10.1007/s00382-011-1259-y
article
Google Scholar
Voldoire A, Saint-Martin D, Senesi S et al (2019) Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J Adv Model Earth Syst 11(7):2177–2213. https://doi.org/10.1029/2019MS001683
article
Google Scholar
Waliser DE, Li JLF, Woods CP et al (2009) Cloud ice: A climate model challenge with signs and expectations of progress. J Geophys Res 114:D00A21. https://doi.org/10.1029/2008JD010015
article
Google Scholar
Watanabe M, Suzuki T, O’ishi R et al (2010) Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J Clim 23:6312–6335. https://doi.org/10.1175/2010JCLI3679.1
article
Google Scholar
Webb MJ, Andrews T, Bodas-Salcedo A et al (2017) The cloud feedback model intercomparison project (CFMIP) contribution to CMIP6. Geosci Model Dev 10:359–384. https://doi.org/10.5194/gmd-10-359-2017
article
CAS
Google Scholar
Williams KD, Copsey D, Blockley EW et al (2017) The Met Office global coupled model 3.0 and 3.1 (GC3.0 and GC3.1) configurations. J Adv Model Earth Syst 10(2):357–380. https://doi.org/10.1002/2017MS001115
article
Google Scholar
Wu T, Yu R, Zhang F, Wang Z, Dong M, Wang L, Jin X, Chen DL, Li L (2010) The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate. Clim Dyn 34:123–147. https://doi.org/10.1007/s00382-008-0487-2
article
Google Scholar
Wu T , Li W , Ji J et al ( 2013 ) global carbon budget simulate by the Beijing climate center climate system model for the last century . J Geophys Res Atmos 118:4326–4347 . https://doi.org/10.1002/jgrd.50320
article
CAS
Google Scholar
Wu T, Lu Y, Fang Y et al (2019) The Beijing climate center climate system model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci Model Dev 12:1573–1600. https://doi.org/10.5194/gmd-12-1573-2019
article
Google Scholar
Yamada Y , Satoh M , Sugi M , Kodama C , Noda AT , Nakano M , Nasuno T ( 2017 ) response of tropical cyclone activity and structure to global warming in a high – resolution global nonhydrostatic model . J Clim 30:9703–9724 . https://doi.org/10.1175/jcli-d-17-0068.1
article
Google Scholar
Yukimoto S, Adachi Y, Hosaka M et al (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3-Model description and basic performance. J Meteorol Soc Japan 90a:23–64. https://doi.org/10.2151/jmsj.2012-A02
article
Google Scholar
Yukimoto S, Kawai H, Koshiro T et al (2019) The meteorological research institute Earth system model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J Meteorol Soc Japan 97(5):931–965. https://doi.org/10.2151/jmsj.2019-051
article
Google Scholar
Yukimoto S, Yoshimura H, Hosaka M et al (2011) Meteorological Research Institute Earth System Model Version 1 (MRI-ESM1) Model description. Technical Report no. 64. Tsukuba, Japan: Meteorological Research Institute. https://doi.org/10.11483/mritechrepo.64
Zelinka MD , Hartmann DL ( 2010 ) Why is longwave cloud feedback positive ? J Geophys Res 115 : d16117 . https://doi.org/10.1029/2010JD013817
article
Google Scholar
Zelinka MD, Zhou C, Klein SA (2016) Insights from a refined decomposition of cloud feedbacks. Geophys Res Lett 43:9259–9269. https://doi.org/10.1002/2016GL069917
article
Google Scholar
Zelinka MD , Randall DA , Webb MJ , Klein SA ( 2017 ) clear cloud of uncertainty . Nat Clim Chang 7:674–678 . https://doi.org/10.1038/nclimate3402
article
Google Scholar